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Abstract

The neural mechanism for the dyadic process of teaching is poorly understood. Although theories
about teaching have proposed that before any teaching takes place, the teacher will predict the
knowledge state of the student(s) to enhance the teaching outcome, this theoretical Prediction-
Transmission hypothesis has not been tested with any neuroimaging studies. Using functional
near-infrared spectroscopy-based hyperscanning, this study measured brain activities of the
teacher-student pairs simultaneously. Results showed that better teaching outcome was associ-
ated with higher time-lagged interpersonal neural synchronization (INS) between right temporal-
parietal junction (TPJ) of the teacher and anterior superior temporal cortex (aSTC) of the student,
when the teacher’s brain activity preceded that of the student. Moreover, time course analyses
suggested that such INS could mark the quality of the teaching outcome at an early stage of the
teaching process. These results provided key neural evidence for the Prediction-Transmission

hypothesis about teaching, and suggested that the INS plays an important role in the successful

Numbers: CNLYB1605, CNLZD1604 teaching.
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1 | INTRODUCTION

Theories about teaching suggest that teaching must involve joint men-
tal activities between the teacher and her/his student(s) (Kline, 2015;
Nurmi & Kiuru, 2015; Palincsar, 1998; Ryan & Deci, 2000). In particular,
before any teaching takes place, the teacher will predict the knowledge
state of the student(s), that is, to figure out their Zone of Proximal
Development (i.e., ZPD, Vygotsky, 1978), which will help the teacher
formulate an appropriate representation of the knowledge to be trans-
mitted to the student(s). This process of transmitting knowledge from
the teacher to the student is known as the Prediction-Transmission

functional near-infrared spectroscopy, hyperscanning, interpersonal neural synchronization, predic-

hypothesis (Figure 1a). Although this hypothesis is widely accepted, it
has not been directly tested with neural evidence.

Several previous studies have examined the neural mechanism of
some aspects of teaching that may be of relevance to the Prediction-
Transmission hypothesis. For example, Dikker et al. (2017) recently
found that the neural synchronization between pairs of students could
reflect the level of the students’ social engagement in a classroom. This
study, however, did not examine the teacher-student relationship. Two
studies specifically examined the teaching process using functional
near-infrared spectroscopy (fNIRS)-based hyperscanning (Holper et al.,
2013; Takeuchi, Mori, Suzukamo, & lzumi, 2017), and found significant

3046 | ©2018 Wiley Periodicals, Inc.

wileyonlinelibrary.com/journal/hbm

Hum Brain Mapp. 2018;39:3046-3057.


http://orcid.org/0000-0002-0065-6398
http://orcid.org/0000-0002-0040-0587

ZHENG ET AL.

Prediction Transmission

Appropriate representation
of the knowledge

Teacher

knowledge

e

Learning

Student

Time

Knowledge

FIGURE 1 A hypothesized mechanistic model based on teaching
theories. Specifically, teaching should start with high-quality com-
munications between the teacher and the student @. Before the
knowledge is actually taught @, the teacher will predict the stu-
dent’s knowledge state @ (Vygotsky, 1978), whereby to formulate
an appropriate representation of the knowledge that can be trans-
mitted to the student ®. When these processes proceed success-
fully, knowledge will be transmitted from the teacher to the
student. Otherwise, the transmission will fail [Color figure can be
viewed at wileyonlinelibrary.com]

correlations between the averaged brain activities of the teacher and
those of the students who acquired the knowledge taught to them, but
not between the brain activities of the teacher and the students who
did not acquire the knowledge. However, neither study tested the
Prediction-Transmission hypothesis as described above. Finally, one
study on speaker-listener's neural coupling found that the listener’s
brain activity was coupled with the speaker’s brain activity with a time
lag, which suggested that the listener was involved in a prediction pro-
cess to help him/her to understand the subsequent speech information
(Stephens, Silbert, & Hasson, 2010). Unlike a conversation involving
the interlocutors who play a comparable role, however, teaching
involves an asymmetry of the knowledge states of the teacher and the
student(s), with the teacher knowing much more than the students do.
Consequently, the teacher is in a position to know what to teach, how
much to teach, and how to teach, etc., whereas the student(s) would
not know the content of the material to be taught and how the teacher
would teach them. In this context, it seems logical that the teacher
would involve the Prediction-Transmission process, whereas the stu-
dent(s) would not be able to effectively predict what the teacher would
do. This conjecture has yet to be tested. Furthermore, it remains
unclear whether such prediction by the teacher would enhance the
teaching outcome, that is, better knowledge transmission from the
teacher to the student(s).

Another unresolved issue in teaching is whether different teaching
styles are associated different teaching outcomes. For example, while
some studies showed that students benefited more from lecturing than
interactive teaching when the learning materials are abstract (Hein
et al, 2012; Wetzel, Potter, & O'Toole, 1982), other studies did not
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find this difference (Aitkin, Bennett, & Hesketh, 1981; Coop & Brown,
1970). Moreover, video teaching was reported to be just as efficient as
teaching in the traditional face-to-face style (Tallent-Runnels et al.,
2006). As far as we know, no neuroimaging studies have examined the
potential neural differences between teaching styles.

This study addressed the above issues by employing the fNIRS-
based hyperscanning approach because fNIRS has clear advantages
over other techniques such as fMRI and EEG in terms of portability,
high tolerance of movement artifacts, and measurements of local
hemodynamic effect. In terms of brain areas of interest to this study,
previous studies have clearly implicated the prefrontal cortex (PFC) in
teacher-student interactions (Holper et al., 2013; Takeuchi et al,
2017); the temporal-parietal junction (TPJ) in the processing of others’
mental state (i.e., mentalizing and interpersonal prediction) (Carter,
Bowling, Reeck, & Huettel, 2012; Dobbins, Long, Dedrick, & Clemons,
1990), memory retrieval (Bzdok et al., 2013), and asymmetrical social
interactions (i.e., leader-follower) (Jiang et al., 2015); and the superior
temporal cortex in the representation of semantic knowledge needed
for teaching (Correia et al., 2014; Pobric, Lambon Ralph, & Zahn, 2016).
Focusing on these three brain areas, this study aimed (a) to identify the
interpersonal neural synchronization (INS) that would be associated
with teachers’ prediction process and (b) to determine any potential

modulating effect of teaching style on the prediction process.

2 | MATERIALS AND METHODS

2.1 | Participants

Four healthy adults (2 females, mean age=25+ 24 vyears) were
recruited from a postgraduate teacher training program at Beijing Nor-
mal University and assigned as teachers. All teachers had received
teacher training for 6 or 7 years (4 years of undergraduate and 2 or 3
years of graduate training). In addition, 60 healthy undergraduate stu-
dents were recruited from universities in Beijing through advertise-
ments (30 females, mean age = 23 + 2.3 years). The 60 students were
pseudorandomly (equal numbers of males and females for each group)
split into 3 groups for the 3 teaching styles (to be described in the next
section). The 20 students in each group were randomly assigned to the
4 teachers. Each teacher taught 5 students in the one-on-one format
for each teaching style. All participants were right-handed (Oldfield,
1971) and had normal or corrected-to-normal vision. The average age
of the students did not differ significantly by teaching style (F,
57=0.01, p=.99).

Written informed consent was received from all subjects. The
study protocol was approved by the Institutional Review Board of the
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing

Normal University.

2.2 | Experimental tasks and materials

To assess teaching outcome, we asked the “teachers” to teach the “stu-
dents” about numerical reasoning, that is, looking for the hidden rule

about numerical relationship among a given sequence of numbers. We
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FIGURE 2 Experimental setup and teaching outcome. (a) Experimental paradigm. Teacher-student pairs were seated in a room side-by-
side in front of a computer, similar to a typical tutoring setting. They went through the three teaching styles, the order of which was coun-
terbalanced across teacher-student pairs. (b) fNIRS data acquisition. Customized optode sets covered the frontal, temporal, and parietal cor-
tices. Measured channels are marked by numbers. The position was confirmed by MRI of one typical participant (normalized to the MNI
coordinate space). (c) Distribution of teaching outcome. Each point represents the difference between post- and pre-test scores. The scores
have been converted into T scores [Color figure can be viewed at wileyonlinelibrary.com]

selected numerical reasoning tasks as the content for teaching because
they are novel to most young adults and yet can be taught within 10-
20 min. This content was selected from a national standard guidebook
[Chinese Civil Servants Administrative Professional Knowledge Level
Tests (CCSAPAT), 2014] that aims to measure and improve various
abilities including numerical reasoning in young adults (18-40 years
old). Numerical reasoning involves finding hidden relations among a
given number sequence. For instance, the number sequence of “2, 4, _,
8, 10, 12" follows the rule that all numbers are even numbers that dif-
fer by the constant of 2, so “6” is the correct answer. CCSAPAT has
proven to have good validity and reliability (Wu, 2013). The students in
our sample had not been exposed to CCSAPAT.

Eight training examples were selected from CCSAPAT’s training
section, each of which represented a specific approach to numerical
reasoning. These approaches have proven to be fast and efficient in
finding the hidden rules under various conditions. For instance, if a
number sequence was composed of fractions, for example, , 1, % 2, 12,
_, one should consider the numerator and denominator separately. The
numerators (after converting the fractions into a sequence of increasing
magnitude) have a difference of 3 (1, 4, 7, 10, 13), while the denomina-
tors have a difference of 2 (2, 4, 6, 8, 10). Thus, the missing next num-
ber should be 16 = 4

22 = 2. The specific approach was described in a teaching
script.

23

All teaching was in the format of one teacher to one student (Fig-
ure 2a). Each of the 4 teachers taught the same content to 3 groups of
individual students in 3 different styles, that is, lecturing, interactive,
and video. Prior to the experiment, all teachers were trained for

teaching the contents. First, all teachers were given the 8 examples
and the teaching script for each teach style. For the lecturing style, the
teacher explained to the student the steps for solving each example.
The teacher did not ask questions and the student was not allowed to
ask questions, either. For the interactive style, the teacher first pre-
sented an example on a computer screen, and the student read and
thought about the problem for about 20 s. Next, the teacher would
guide the student to solve the problem according to the approach
described in the script, in a Q&A approach. For the video style, the vid-
eos were recorded when the teacher simulated the lecturing style alone
(her/his fNIRS data were collected at this time). Then, the students
learnt by watching the video alone while being scanned with fNIRS.

All teachers were required to prepare teaching at home for 2 days.
They practiced with each other in the lab until they were satisfied with
their own teaching performance in both lecturing and interactive teach-
ing styles. Then they demonstrated teaching to the experimenter in a
one-on-one format until their performance met the approval of the
experimenter.

2.3 | Experimental procedures

Data collection started with a 10-min resting-state session, which
served as a baseline. During this session, the participants were required
to keep still with their eyes closed, relax their mind, and remain as
motionless as possible (Jiang et al., 2012).

The teaching session immediately followed the resting-state ses-

sion. For lecturing and interactive styles, the teacher and the student
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sat side-by-side in front of a table in a silent room (Figure 2a). For the
video style, only the student sat in front of a table with a computer
screen on the table. The length of the teaching periods was flexible and
up to the teacher and the student. They lasted 13-26 min. The whole
experimental procedures were video recorded.

2.4 | Behavioral tests

Students’ knowledge of numerical reasoning was tested immediately
before the onset of resting-state session and after the end of the
teaching session. A total of 30 4-choice items were selected from
CCSAPAT's test bank. To create equivalent pre- and post-tests, addi-
tional 8 participants not involved in this experiment were recruited to
take the 30-item test and their scores (% correct) were used to index
the difficulty levels of the 30 items. Three items with potentially con-
fusing expressions (based on subjects’ feedback) were deleted. Seven
items with highest (>70%) and lowest levels of accuracy (<30%) were
also deleted for their lack of contribution to the variance and to avoid
the ceiling and flooring effects. The remaining 20 items were randomly
split into two halves, one for the pretest and the other for the post-
test. The difficulty levels of the pre- and post-tests did not differ based
on the 8 pilot testing participants’ scores [t(18) = 0.974, p = .343]. For
the actual experiment, the participants had 20 min to finish each of the
tests. All students finished the test within this time limit.

2.5 | fNIRS data acquisition

The imaging data were collected from the teacher and the student
simultaneously during teaching using an ETG-4000 optical topography
system (Hitachi, Japan). Four sets of the customized optode probes
were used in each pair. Each set had 4 emitters and 4 detectors that
consisted of 10 measurement channels (30 mm optode separation). For
each participant, the probe sets covered the bilateral frontal, temporal,
and parietal cortices. The probe set on the left hemisphere was more
anterior, whereas that on the right was more posterior, to better cover
the left frontal cortex and right temporal-parietal cortex. CH2 was
placed at FP1 on the left hemisphere, and CH19 was placed at F8 on
the right hemisphere, according to the international 10-20 system (Fig-
ure 2b). The probe sets were checked and adjusted to ensure consis-
tency within the teacher-student pair and across pairs.

To confirm the anatomical position of each optode, MRI was
obtained from one typical participant with a high-resolution T1-
weighted magnetization-prepared rapid gradient echo sequence (TR=
2,530 ms; TE = 3.30 ms; flip angle = 7°; slice thickness = 1.3 mm; in-
plane resolution=1.3 X 1.0 m? number of interleaved sagittal
slices = 128). SPM8 (Statistical Parametric Mapping, Wellcome Depart-
ment of Cognitive Neurology, London, UK) was used to normalize the
MRI to the standard MNI coordinate space with a modulated normal-
ization method (Ashburner & Friston, 2005). According to the Auto-
mated Anatomical Labeling template (Tzourio-Mazoyer et al., 2002),
the anatomical positions below the optode were identified. This infor-

mation was used to provide neurofunctional explanations of the
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significant teaching outcome or the teaching style effects (see below)
based on the CH combinations’ roughly corresponding brain areas.

The absorption of near-infrared light at two wavelengths (695 and
830 nm) was measured with a sampling rate of 10 Hz. Based on the
modified Beer-Lambert Law, changes of the oxy-hemoglobin (HbO)
and deoxy-hemoglobin (HbR) concentrations were obtained by meas-
uring the absorption changes of fNIRS light after its transmission
through the tissue. Previous studies have shown that HbO is a sensi-
tive indicator of the change in regional cerebral blood flow (Hoshi,
2007). Thus, this study focused on the HbO concentrations only.

2.6 | Data analyses

2.6.1 | Behavioral teaching outcome

The percentage of correctly answered testing items was calculated and
used as the test score. To test the effect of teaching and teaching style
(lecturing, interactive, and video), a repeated measures ANOVA was
conducted on the test score, with the time of test (pre- vs post-test)
and teaching style as the independent variables. For subsequent analy-
ses, teaching outcome was indexed by the difference between post-
and pre-test scores after they were transformed into T scores.

2.6.2 | fNIRS data analysis

Individual-level analysis

fNIRS data collected during the resting-state and teaching sessions
were analyzed. Data from the first and last 10 s were deleted during
the preprocessing to obtain data within the period of steady state. Dur-
ing preprocessing, no filtering or detrending procedures were applied
(Cui, Bryant, & Reiss, 2012). These procedures were conducted on the
coherence value as described below. In addition, we also did not per-
form any artifact corrections at the single-subject level, as wavelet
transform coherence (WTC) normalizes the amplitude of the signal
according to each time window and thus is not vulnerable to the
transient spikes induced by movements (Nozawa, Sasaki, Sakaki,
Yokoyama, & Kawashima, 2016).

Next, a Matlab package was used to perform WTC (Grinsted,
Moore, & Jevrejeva, 2004) to assess the cross-correlation between the
two fNIRS time series generated by each pair of the participants as a
function of frequency and time (Torrence & Compo, 1998). For exam-
ple, for a specific teacher-student pair, two time-series of HbO were
obtained, one from CH1 of the teacher and the other from CH2 of the
student. The two time-series had the same length of the teaching
period because the teacher and student interacted with each other.
Then, WTC was applied to these two time-series to find regions in
the time frequency space where the two time-series co-varied. This
generated a 2-D matrix of the coherence value. In the matrix, each line
corresponded to a specific frequency point, while each column corre-
sponded to a specific time point. For more thorough information about
wavelet coherence, please see Grinsted et al. (2004) and Chang and
Glover (2010). Because there were 20 measurement channels for each
participant, 400 pairs of time-series were generated for each pair of
the participants, and WTC was thus conducted 400 times. Next, the
coherence values were time-averaged across the whole teaching
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period, and converted into Fisher z-values. These procedures were con-
ducted for each of the three teaching styles as well as the resting state.
According to previous studies (Cui et al., 2012; Jiang et al., 2012), the
coherence value increases during the task session compared to the
resting-state session. Thus, the coherence value from the resting-state
was subtracted from that of the teaching period, resulting in an index
of INS increase. At this stage, no specific frequency ranges were

selected.

Group-level analysis
To identify the INS increases that were specifically associated with the
teaching outcome and teaching style, the following steps were per-
formed. First, to identify the frequency ranges that were specifically
associated with the teaching outcome or teaching style, one-way
ANCOVA was conducted on the time-averaged coherence value of
each CH combination (400 in total) along the full frequency range
(0.01-0.7 Hz). For that analysis, the teaching style (a categorical vari-
able) was an independent variable and the teaching outcome (a contin-
uous variable) was a covariate. Following previous studies (Barrett,
Barman, Boitano, & Brooks, 2015; Guijt, Sluiter, & Frings-Dresen,
2007; Tong, Lindsey, & Frederick, 2011), data above 0.7 Hz were not
included to avoid aliasing of higher frequency physiological noise such
as cardiac activity (~0.8-2.5 Hz); data below 0.01 Hz were also not
used to remove very low frequency fluctuations; and finally, data
within the frequency range of respiratory activity (~0.15-0.3 Hz) were
not considered, either. The ANCOVA results were thresholded at
p <.0005. No further correction for multiple comparisons was applied
because this analysis was only used to identify the pattern along the
frequency range rather than to obtain the final results. For the teaching
outcome analysis, only two frequencies (i.e., 0.6Hz and 0.03 Hz) had
CH combinations whose p value survived the thresholding (Supporting
Information, Figure S1). Then, the frequencies that were around these
two frequencies and meanwhile whose p values were <0.05 were
selected, resulting in two frequency ranges, that is, 0.5-0.7 Hz and
0.02-0.03 Hz. The same procedures were applied to the analysis of
teaching style, and two frequency ranges were selected, that is, 0.3-
0.4 Hz and 0.06-0.07 Hz. Second, the coherence values within these
two frequency ranges were averaged separately. One-way ANCOVA
was conducted again, on the time-averaged and frequency-averaged
data. Results were corrected with the false discovery rate (FDR)
method for all CHs at p < .05 level. As a general approach to the multi-
ple comparisons problem, an FDR threshold is determined from the
observed p value distribution, and hence is adaptive to the amount of
signal in the data. The procedure used here is an extension (Genovese,
Lazar, & Nichols, 2002; Nichols & Hayasaka, 2003) of SPM8 (Statistical
Parametric Mapping, Wellcome Department of Cognitive Neurology,
London, UK) that implemented the Benjamini-Hochberg method (Ben-
jamini, Krieger, & Yekutieli, 2006; Benjamini & Yekutieli, 2001). The
overall procedures are summarized in Supporting Information, Figure
S2.

In addition, to examine whether and when the teacher predicted
the student’s knowledge state (per the Prediction-Transmission

hypothesis), we added various time-lags to the computation of INS

increases (Liu et al., 2017; Stephens et al., 2010). Specifically, the time
course of the teacher’s brain activity was shifted forward or backward
relative to that of the student’s brain activity by 2-14 s (step = 2 s) and
the INS increases were recomputed and statistically tested. Results
were corrected with the FDR method for all CHs across all time-lags at
p <.05 level.

To identify the earliest time-point whose INS increase was associ-
ated with teaching outcome and/or teaching style, the one-way
ANCOVA described above was rerun with the following five steps. First,
for the particular CH combination that showed significant results either
for teaching outcome or teaching style, its 2-D matrix of coherence val-
ues was obtained for each of the teaching styles and the resting state.
Second, the coherence values were averaged within the selected fre-
quency range(s), generating a 1-D frequency-averaged time-series of
coherence values. Third, for each teacher-student pair, the time-series of
coherence values during teaching was temporally resampled into the
same length as that during the resting state. The resampling procedure
kept the regional features (in time) but only changed the length of the
time-series. Thus, the temporal dynamics of the teaching process was still
retained. Fourth, the INS increase was obtained by subtracting the INS of
resting state from that of different teaching styles. Finally, one-way
ANCOVA with the teaching style as the independent variable and teach-
ing outcome as a covariate was conducted on the INS increase at each
time point along the time-series, resulting in two time-series of p values,
one for the teaching outcome, the other for the teaching style. The p val-
ues were corrected by FDR method across the time points (p < .05) for
the teaching outcome and teaching style respectively. Based on the time-
series of the p values, the earliest time point whose INS increase reached

significance was identified.

2.7 | Linking teaching behaviors with the INS

To link the pattern of teaching behaviors with the INS with time-lags,
additional two participants were recruited to code the teaching behav-
iors frame-by-frame based on the video of teaching with the interactive
style. Only the interactive teaching style was analyzed because (a) there
were no explicit interaction behaviors in the other two teaching styles
and (b) the INS increase with a time-lag at TPJ-aSTC was correlated
with teaching outcome regardless of the teaching style. Three teacher-
student pairs were removed due to video-recording failure. The two
coders identified the time point where the teacher just started to ask a
question and where the student just started to answer the question
within each of the 8 examples. The intraclass correlation (ICC) was con-
ducted across all the time points in each teacher-student pair to assess
the intercoder reliability. The coefficient was high (mean of Cronbach’s
Alpha = 0.902, SD = 0.082). Then, the two coders discussed the coding
results in order to reach a consensus. During this process, one addi-
tional teacher-student pair was removed because the two coders could
not reach an agreement about the coding of one specific example
(number 6). We also calculated the percentage of correct answers of
the student for each teacher-student pair. Pairs whose percentage of
correct answers was below 50% were not included in the following

analyses (3 pairs) because for these pairs, the teachers’ prediction was
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likely to be unsuccessful. Thus, there were 13 teacher-student pairs left.
Next, the time-durations for asking and answering questions were aver-
aged across the 8 examples and then across all teacher-student pairs by
calculating the median (here median was used because there was large
variance across examples and pairs). Finally, to test the relationship
between asking and answering questions with INS, INS at time points
immediately before the teacher asked questions and before the student
answered questions were averaged and compared to INS at other time

points.

3 | RESULTS

3.1 | Behavioral results

To demonstrate the effectiveness of teaching, test scores were trans-
formed into T scores (mean=50, SD=10). Repeated measures
ANOVA on test scores (time of test vs teaching style) showed a signifi-
cant main effect of time of test (F(4, 57)= 502.981, p <.001), with post-
test scores being significantly higher than pretest scores. Teaching style
did not have a significant effect (Fp, 57)= 0.499, p=.61), nor did the
interaction between teaching style and time of test (Fy, s =0.58,
p = .563). For subsequent analyses, the teaching outcome was indexed
by the change score (pre-test scores were subtracted from post-test
scores). The distribution of the teaching outcome in all teacher-student

pairs is shown in Figure 2c, which indicates a wide distribution.

3.2 | Confirmation of the INS between the teacher
and the student when their brain activities were
temporally aligned

To identify the INS increases that were associated with teaching out-
come and/or teaching style, we conducted one-way ANCOVA with the
teaching style (a categorical variable of three teaching styles) as the
independent variable and the teaching outcome (a continuous variable)
as a covariate. Results were corrected with the false discovery rate
(FDR) method for all CHs at p < .05 level. Teaching outcome was a sig-
nificant positive covariate of INS between teachers’ anterior superior
temporal (@STC, CH17) and studentss TPJ (CH3,
F1, 56y = 19.297, p <.001) at the frequency band of 0.5-0.7 Hz (Figure

3a-e). There were no significant results of the teaching outcome for

cortex

other CHs and other frequency bands (p > .05, FDR corrected).

In terms of the effect of the teaching style, there was a significant
INS increase at right TPJ-TPJ (CH3, teacher-student) at the frequency
band of 0.06-0.07 Hz (Fp, 56 = 12.472, p <.001) (Figure 3f-j). Pairwise
comparison (p < .05, Sidak correction) indicated that INS increase was sig-
nificantly lower for the video style than for the other two styles (both at
p <.001). There was no significant difference between the lecturing and
interactive teaching styles (p = .505). It is worth noting that the effect of
teaching style was not significant for the teaching outcome-related CH
combination of aSTC-TPJ mentioned above (F(, 5¢) = 2.844, p = .067).

As the length of the teaching periods varied across the teacher-
student pairs, it might have affected teaching outcome and the INS
increase. To exclude this possibility, a Pearson correlation was
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conducted between the teaching outcome and the length of the teach-
ing period. No significant correlation was found (r= —.011, p =.933).
Next, we repeated the one-way ANCOVA by adding the length of the
teaching period as an additional covariate. Results showed that teach-
ing outcome was still a significant positive covariate of INS at aSTC-
TPJ (CH17-3) (F1, 55=17.548, p<.001). There was no significant
effect either for the teaching style (F(p, 55 = 2.273, p = .075) or for the
length of the teaching period (F(1, 55=0.112, p = .74).

3.3 | INS between the teacher and the student when
the teacher’s brain activity was shifted forward or
backward

The time-lag results showed that teaching outcome was a significant pos-
itive covariate of the INS increase at TPJ-aSTC (i.e.,, CH3-17, from the
teacher to the student) at 0.5-0.7 Hz when the teacher’s brain activity
preceded that of the student by 10 s (Fy, s5¢) = 24.889, p <.001) (Figures
3k-o0 and 4). No significant effect was found for the teaching style at this
time-lag (Fo, s6)= 0.287, p =.752) or other time-lags (p > .05, FDR cor-
rected). Also, when the length of the teaching period was added as an
additional covariate, there was still a significant positive relationship
between the INS increase at TPJ-aSTC and the teaching outcome
(Fi1, 55 = 23.655, p <.001). There was no significant effect either for the
teaching style (Fp, s5)=.168, p = .846) or for the length of the teaching
period (F1, 55 = 0, p = .999). No significant results were found when the
student’s brain activity preceded that of the teacher at any time-lags, at
any CH combinations (p > .05, FDR corrected).

3.4 | Linking the teaching behaviors with INS

The average duration for the teachers to ask a question was 7 s
(SD = 5), and the average duration for the students to answer a ques-
tion was 11 s (SD = 7). Thus, there was one round of an alternation
between asking and answering questions within about 18 s. The
teacher was more likely to make prediction about what the students’
answer might be and what to ask next. This hypothesis would predict
higher INS at time points immediately before the teacher asked the
question and immediately before the student answered the question
(i.e., before Q&A) than at other time points.

To test this hypothesis, the INS at time points before Q&A were
averaged and compared to INS at other time points. Results showed
higher INS at time points before Q&A than at other time points [t
(12) = 2.004, p = .034, one-tailed]. Similar tests were conducted on the
INS increase at aSTC-TPJ, which was suggested to be associated with
actual teaching rather than prediction. No significant result was found
[t(12) = 1.593, p = .069, one-tailed]. These results confirmed the earlier
hypothesis that the teacher might make predictions immediately before

she/he asked a question and the students answered the question.

3.5 | How early could the INS increase mark eventual
teaching outcome?

To identify the earliest time-point whose INS increase at aSTC-TPJ
(which was associated with teaching outcome as reported above) would
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FIGURE 3 ANCOVA results. (a-e) Results without time-lags at the frequency band of 0.5-0.7 Hz. (f-j) Results without time-lags at the fre-
quency band of 0.06-0.07 Hz. (k-o) Results when the teacher’s brain activity preceded that of the student by 10 s at the frequency band
of 0.5-0.7 Hz. (a), (f), and (k) F-maps for teaching outcome. (c), (h), and (m) F-maps for teaching style. The blue rectangle highlights the sig-
nificant result. The numbers represent CHs. (b), (g), and (I) Partial correlation plot between the INS increase and teaching outcome. (d), (i),
and (n) Pairwise comparison across the three teaching styles. The error bars indicate standard errors. (e), (j), and (o) Thresholded results that
are showed on the brain [Color figure can be viewed at wileyonlinelibrary.com]
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predict the eventual teaching outcome, ANCOVA as described above
was conducted for each time point along the time course. Results
showed that by the time of 486 s after the start of teaching, the INS
increase at aSTC-TPJ became a significant correlate of the teaching out-
come, suggesting that about eight min into the teaching period, the INS
increase could mark successful knowledge transmission (Figure 5a). No
significant effect of the teaching style was found at any time points for
the aSTC-TPJ CH combination (p > .05, FDR corrected). Meanwhile, the
teaching style-related INS increase at TPJ-TPJ as reported reached signifi-
cance after about 76 s of teaching (Figure 5b). Again, no significant results
for the teaching outcome were found at the TPJ-TPJ CH combination at
any time points (p > .05, FDR corrected).

The same time-point-by-time-point analyses were also conducted
after time lags were added to the data. For the INS increase at TPJ-
aSTC, which was associated with the teaching outcome when the
teacher’s brain activity preceded that of the student by 10 s, we found
that it reached significance around 102 s after the onset of teaching
(Figure 5c). No significant effect was found for the teaching style at
TPJ-aSTC CH combination at any time points for any time lags
(p > 0.05, FDR corrected).

4 | DISCUSSION
INS has been hypothesized to be associated with teaching, but there
has been little direct evidence based on simultaneous recordings of the

neural activities of the teachers and the students. Using fNIRS-based

hyperscanning, this study measured brain activities from the teachers

and the students simultaneously, identified the INS increase associated
with a prediction process that was positively associated with teaching
outcome regardless of the teaching style.

First, we identified a significant INS increase that was positively
associated with teaching outcome between left aSTC of the teacher
and right TPJ of the student when the brain activities of the teacher
and student were temporally aligned. This finding was consistent with
previous evidence that INS could be a neural marker for social interac-
tions in the educational settings (Dikker et al., 2017), but this study
expanded from student-to-student relationship (Dikker et al., 2017) to
teacher-to-student relationship. The present finding also confirmed
that successful knowledge transmission was related to correlations of
the teacher’s and the student’s brain activities (Holper et al., 2013;
Takeuchi et al., 2017) using a novel method, that is, examining the
temporal dynamic covariation of brain activities of the teacher and
the student along the teaching process in a large sample of partici-
pants (N =60 pairs). Previous evidence has shown that while left
aSTC is the modality-invariant representational hub within the seman-
tic system (Correia et al., 2014; Pobric et al., 2016), right TPJ is exclu-
sively involved in high-level mentalizing (Carter et al., 2012; Dobbins
et al., 1990) and memory retrieval (Bzdok et al., 2013). Thus, the cur-
rent findings suggested that INS at aSTC-TPJ might reflect a
knowledge-related joint mental activity between the teacher and the
student, whereby knowledge was transmitted from the teacher to the
student.

Second, when the brain activity of the teacher at right TPJ pre-
ceded that of the student at left aSTC by 10 s, a significant
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FIGURE 5 The temporal dynamics of the relationship between
the INS increase and teaching outcome and style. (a) and (b)
Patterns when there was no time-lags. (c) Pattern when the teach-
er's brain activity preceded that of the student by 10 s. The stars
indicate significance at p <.05 level with FDR correction for all CH
combinations across all time-lags. No further statistical tests were
conducted on the specific CH combinations. The vertical line for
each panel indicates the earliest time point that the effect reached
significance. The red and blue colors represent the results of teach-
ing outcome and teaching style, respectively [Color figure can be
viewed at wileyonlinelibrary.com]

INS increase was associated with the teaching outcome but not teach-
ing style. According to the theory of language communication
(Pickering & Garrod, 2007), prediction plays an important role in both
speech production and comprehension. Both behavioral (for a review,
see Pickering & Garrod, 2007) and neural evidence (Liu et al., 2017,
Stephens et al., 2010) supports this theory. Consistent with this propo-
sition, we found that the teacher’s brain activity was associated with
subsequent brain activity of the student. Moreover, we found that the
INS increase occurred specifically at TPJ-aSTC, which is generally con-
sidered to be a key area for theory of mind (ToM) or mentalizing (Car-
ter et al., 2012). Thus, the INS increase with a time-lag at TPJ-aSTC
should reflect the function of TPJ in predicting the mental state of the
student. More specifically, the length of the time-lag (10 s) roughly cor-
responded to the amount of time the teacher used to ask a question as
well as the amount of time of the student used to answer a question.
The INS was also significantly higher immediately before the teacher
asked a question and the student answered a question than at other
time points. Therefore, it was more likely that the teacher made

predictions about what the student’s answer would be and what to ask
next. In sum, it seems that the teacher might make a prediction about
the knowledge state of the student prior to actual knowledge transmis-
sion, and then proceed to formulate an appropriate representation of
the knowledge that can be transmitted to the student (Figure 6).

We did not find a similar result of INS increase when the student’s
brain activity preceded that of the teacher. One possibility was that we
had two teaching styles that involved only one-way information flow
from the teacher to the student, that is, lecturing and video teaching.
Previous evidence has shown that in such a one-way communication
context, the speaker’s brain activity preceded that of the listener at TPJ
but not vice versa (Stephens et al., 2010). Even in the interactive teach-
ing style, the teacher still played a dominant role. Previous evidence
has shown that in a communication context that occurs within a domi-
nant relationship, the leader’s brain activity was always temporally
ahead of that of the followers (Jiang et al., 2015; Konvalinka et al.,
2014). Thus, it seems that the teacher’s prediction played a dominant
role in this study. However, our findings could not exclude the possibil-
ity that with other teaching styles not included in our study, there is
student’s prediction about the teacher’'s mental state as well.

Third, teaching style was associated with the INS increase at TPJ-
TPJ at a lower frequency band. In this study, INS that differed among
the three teaching styles was expected to reflect the neural correlates
for various levels of general communications such as visual inputs,
turn-takings, and even mutual comprehension (Jiang et al., 2012; Osaka
et al., 2015; Stephens et al., 2010). Previous fMRI evidence showed
that in a strictly controlled unidirectional communication context (i.e.,
between a speaker and a listener), INS occurred at widely distributed
brain areas including PFC, IFC, TPJ, and so on (Stephens et al., 2010).

Teacher

re= o.555®

Student

FIGURE 6 A proposed neural mechanistic model based on the
present findings. The establishment of high-quality communication
takes about 1 min @. Before the knowledge is actually taught
(about 10 s before), the teacher will predict the students’ knowl-
edge state @, whereby to formulate an appropriate representation
of the knowledge that can be transmitted to the student ®. When
the knowledge is actually taught, there will be a joint mental activ-
ity between aSTC of the teacher and TPJ of the student @. The
numbers indicate partial correlations with teaching outcomes [Color
figure can be viewed at wileyonlinelibrary.com]
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When the communication occurred bi-directionally in a more naturalis-
tic context, INS was found at left IFC and TPJ (Jiang et al., 2015; Jiang
et al, 2012; Osaka et al., 2015). Only TPJ was identified when there
was a dominant (leader-follower) rather than an egalitarian relationship
between communicators. The present results confirmed this postula-
tion in another type of dominant social relationship, that is, teacher-
student pairs, suggesting that INS at TPJ might be a neural marker for
the dominant social relationship. A new finding of this study was that
the INS increase was significantly lower in the video-teaching style
compared to the lecturing and interactive styles despite their similar
teaching outcomes. In the video style, the teacher and the student did
not interact directly with each other, which might have led to the
decoupling of their brain activities at TPJ.

In this study, it seems that different frequency ranges were associ-
ated with different brain functions. This finding should not be directly
compared with results about frequency ranges from EEG studies
because fNIRS signal differs from EEG signal in different aspects of the
underlying neuronal activity. In previous fNIRS-based hyperscanning
study, the INS at a lower frequency range [such as 0.01-0.1 (Jiang
et al.,, 2012) or 0.02-0.2 (Jiang et al., 2015)] was found to be closely
associated with the turn-taking behaviors in free verbal conversations.
The INS at this frequency range is also closely associated with the
function of frontal cortex and TPJ (Balardin et al., 2017; Balconi &
Vanutelli, 2017; Jiang et al., 2012, 2015; Pan, Cheng, Zhang, Li, & Hu,
2017; Tang et al., 2016; Zhang, Liu, Pelowski, Jia, & Yu, 2017a; Zhang,
Liu, Pelowski, & Yu, 2017b). The INS at right TPJ is found to be specifi-
cally associated with a frequency range of 0.06-0.08 Hz (Tang et al.,
2016). Therefore, previous evidence is consistent with the present
finding on TPJ-TPJ at 0.06-0.07 Hz during teaching.

However, spectral analysis of the INS indicates that the INS is not
limited to the frequency range that directly corresponds to communi-
cating behavior (Nozawa et al., 2016). The frequency range of 0.43-
0.57 Hz also has an enhancement of the INS in a conversation condi-
tion as compared to the control condition (Nozawa et al., 2016). This
frequency range roughly corresponds to the present findings on TPJ-
aSTC at 0.5-0.7 Hz. This frequency range has already excluded the
potential influence of physiological activity such as cardiac (~0.8-2.5
Hz) or respiratory (~0.15-0.3 Hz) activity. Moreover, even though
there are still some residuals of the physiological influence on the INS
at this frequency range, evidence has shown that this influence will
enhance the INS in a non-interactional context (e.g., resting state)
rather than in the interactional context (Nozawa et al., 2016). More-
over, the influence of physiological activity tends to be spatially more
global and homogeneous than the neural signals (Kohno et al., 2007;
Zhang, Brooks, Franceschini, & Boas, 2005). Thus, the local enhance-
ment of the INS at 0.5-0.7 Hz is more likely to have a neural origin.
This is also consistent with recent fMRI evidence indicating the neural
relevance and functional contribution of higher frequency fluctuations
in BOLD signals (up to 0.8 Hz) (Chen & Glover, 2015; Gohel & Biswal,
2015). Recent fMRI evidence has suggested that while low-frequency
BOLD signal may reflect the general excitability (Raichle, 2011) and
spatially overlapped neural networks (Smith et al., 2012), high-
frequency BOLD signal may be confined to focal functions and offer a
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more direct and precise characterization of cognitive processes (Chen
& Glover, 2015). Moreover, the temporal regions can be reliably
detected with the high-frequency BOLD signal around 0.5-0.8 Hz
(Gohel & Biswal, 2015). This is also consistent with the present findings
that the INS at TPJ-aSTC occurred at 0.5-0.7 Hz, suggesting that the
INS at this frequency range might be related to the function of TPJ-
aSTC in predicting the student’s semantic representations. However, as
little evidence exists about the functional significance of the high fre-
quency in the hemodynamic signal, we would refrain from drawing fur-
ther conclusions. Further studies are definitely required to clarify this
issue.

Finally, this study demonstrated that INS could mark knowledge
transmission at a specific stage of teaching. Previous evidence indicates
that INS reached significance at a very early stage when the roles of
communicators were assigned a priori or emerged in the task (Jiang
et al., 2015; Konvalinka et al., 2014). However, a study on teacher-stu-
dent interactions found that the brain activities of teachers and stu-
dents correlated at a later stage of teaching (Holper et al., 2013). In this
study, the onset time of the INS increase at TPJ-TPJ appeared very
early (about 1 min after the onset of teaching), which was consistent
with previous findings on general communications (Jiang et al., 2015;
Konvalinka et al., 2014); the onset time of the INS increase at TPJ-
aSTC and aSTC-TPJ appeared late (about 2 and 8 min, respectively),
which was consistent with previous findings on teaching (Holper et al.,
2013). These results suggested that different types of INS might mark
different aspects of teacher-student interactions, and the INS increase
between TPJ and aSTC could specifically mark the quality of teaching
outcome.

Together, the present findings suggest a neural mechanistic model
of Prediction-Transmission for successful teaching (Figure 6). That is, a
good communication between the teacher and the student should be
established at the beginning of the teaching process, which might be a
prerequisite for teaching (see ® of Figure 6). With a good communica-
tion, the teacher will be able to predict the students’ knowledge state
(see @ of Figure 6), whereby to formulate the appropriate representa-
tion of knowledge (see ® of Figure 6). When teaching actually happens,
knowledge is transmitted from the teacher to the student (see @ of
Figure 6). Finally, when knowledge is transmitted, the students’ knowl-
edge state will change accordingly, and the above processes will be
repeated again. Initially, the teacher’s prediction might not be success-
ful. However, after some practice (e.g., <2 min), the prediction is
improved (i.e., the INS increased significantly). Then, knowledge can be
successfully transmitted from the teacher to the student (about 8 min
into the process in this study).
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