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The hemispheric laterality of language processing has become a hot topic in modern neuroscience. Although most previous studies
have reported left-lateralized language processing, other studies found it to be bilateral. A previous neurocomputational model has
proposed a unified framework to explain that the above discrepancy might be from healthy and patient individuals. This model posits
an initial symmetry but imbalanced capacity in language processing for healthy individuals, with this imbalance contributing to
language recovery disparities following different hemispheric injuries. The present study investigated this model by analyzing the
lateralization patterns of language subnetworks across multiple attributes with a group of 99 patients (compared to nonlanguage
processing) and examining the lateralization patterns of language subnetworks in subgroups with damage to different hemispheres.
Subnetworks were identified using a whole-brain network-based lesion-symptom mapping method, and the lateralization index
was quantitatively measured. We found that all the subnetworks in language processing were left-lateralized, while subnetworks
in nonlanguage processing had different lateralization patterns. Moreover, diverse hemisphere-injury subgroups exhibited distinct
language recovery effects. These findings provide robust support for the proposed neurocomputational model of language processing.
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Introduction
Functional lateralization or asymmetry has existed for a long
time in the animal kingdom. The hunting preference in Paleozoic
predators, which appeared ∼500 million years ago, is the
earliest known laterality of behavior (Babcock and Robison 1989;
Güntürkün et al. 2020). Since then, some other nonlanguage
lateral functions have evolved, such as behavioral performance
(e.g. handedness, eye dominance, and foot dominance), sensory
perception (e.g. vision, smell, and tactile perception), and even
cognition (e.g. vocal, emotional, and social recognition) (Babcock
and Robison 1989; Spinozzi and Cacchiarelli 2000; Vallortigara and
Rogers 2005; Yamazaki et al. 2007; Giljov et al. 2012; Ocklenburg,
Ströckens, et al. 2013; Ströckens et al. 2013; Siniscalchi et al.
2016). The human brain is also lateralized (Corballis 2017),
avoiding repetitive information processing and reducing cognitive
competition, and allowing it to perform complex and diverse
cognitive functions efficiently given its limited size and weight
(Corballis 2017; Güntürkün et al. 2020; Rogers 2021). Language,
as a recently evolved high-level cognitive function of the human
brain, has become an importantly and hotly studied scientific
issue in modern neuroscience due to its lateralization. Revealing
language lateralization can provide a better understanding of
our brain and its cognitive functions (Frost et al. 1999; Knecht
et al. 2000; Szaflarski et al. 2002). Moreover, because atypi-
cal lateralization of language is associated with some common
disorders (e.g. epilepsy and schizophrenia; Stewart et al. 2014;

Ocklenburg et al. 2015), the evaluation of language lateralization
has been widely used in clinical neurological settings (Abbott
et al. 2010; Jones et al. 2011; Janecek et al. 2013).

Although the language lateralization pattern in healthy people
has been found to be related to a variety of factors (e.g. age, gen-
der, handedness, and gene), most people still showed typical left
language lateralization in brain activation (Shaywitz et al. 1995;
Crow et al. 1998; Pujol et al. 1999; Knecht et al. 2000; Szaflarski
et al. 2002, 2006, 2012; Dehaene-Lambertz et al. 2003; Wallentin
2009; Perlaki et al. 2013; Ocklenburg et al. 2014). In patients, the
measurement of language laterality was important in epilepsy
and brain tumors before surgery, which could avoid postoperative
language deficit as much as possible (Baxendale et al. 2008; Arora
et al. 2009; Ellmore et al. 2010; Jones et al. 2011; Pillai and Zaca
2011; Partovi et al. 2012; Zacà et al. 2012; Janecek et al. 2013;
Stewart et al. 2014). Furthermore, the atypical language lateraliza-
tion might be a critical manifestation of schizophrenia (Sommer
et al. 2001, 2003; Ocklenburg, Westerhausen, et al. 2013; Sun et al.
2017). For epilepsy patients, bilateral or right-lateral language
representation was relatively more common (Stewart et al. 2014).
The stronger preference for left-handedness, the stronger left-
laterality for the seizure, and the earlier age of seizures might lead
to the stronger right-laterality of language function in patients
with temporal lobe epilepsy (Isaacs et al. 2006; Stewart et al.
2014). In brain tumor patients, the people with tumors in the
right hemisphere showed stronger left-laterality in language tasks
than those with tumors in the left hemisphere; what is more,
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the patients with tumors in the left Broca’s or Wernicke’s area
compared with healthy controls would present more right later-
ality in language processing (Pillai and Zaca 2011; Partovi et al.
2012). For schizophrenia, the nonhallucinating patients showed
weaker left language lateralization compared with healthy peo-
ple, and patients with auditory hallucinations showed a larger
effect in language lateralization reduction than the nonhalluci-
nating patients (Ocklenburg, Westerhausen, et al. 2013). In stroke
patients, about half of them presented deficits in spoken language
and auditory language tasks when the strokes occurred in the left
hemisphere, while just about 10% of the patients were impaired
in auditory language tasks when the strokes occurred in the right
hemisphere (Gajardo-Vidal et al. 2018).

The language function, as a distinct human ability, may exhibit
differences in brain laterality when compared to nonlanguage
functions. To compare the lateral difference between language
and nonlanguage functions in gray matter cortices and white
matter connections, extensive research has been conducted on
healthy and lesioned brains (Thierry and Price 2006; Butler et al.
2009; Han et al. 2013; Herbet et al. 2018; Chen et al. 2019, 2020;
Schumacher et al. 2019; Sundqvist et al. 2020). For example,
early studies reported that a patient with a left thalamic hemor-
rhage had impaired language function and misinterpreted words
(Takahashi et al. 1992), while another patient with a right tempo-
ral lobe lesion had impaired nonlanguage function, and misunder-
stood environmental sounds and noises (Fujii et al. 1990). Further
studies revealed that language processing was lateralized to the
left hemisphere, while nonlanguage processing was bilateral or
lateralized to the right hemisphere (Thierry and Price 2006; Dick
et al. 2007; Rosazza et al. 2009; Schumacher et al. 2019). For
instance, this lateral pattern appeared across the temporal lobes
(Gleissner et al. 1998; Snowden et al. 2004; Butler et al. 2009;
Mesulam et al. 2013; Gainotti 2015; Chen et al. 2019), frontal
lobes (Floel et al. 2004; Herbet et al. 2018), and their white matter
connections (James et al. 2015; Sundqvist et al. 2020). However,
others found that the right hemisphere was also vital for several
aspects of language processing (Lindell 2006; Hartwigsen and
Siebner 2012; Lambon Ralph et al. 2017; Gajardo-Vidal et al. 2018),
including word recognition, production, reading, and prosodic and
pragmatic processing (Lindell 2006; Hartwigsen and Siebner 2012).
For example, studies using transcranial magnetic stimulation dis-
covered that the right hemisphere helps us recognize both unfa-
miliar and concrete words (Braet and Humphreys 2006; Papagno
et al. 2009; Hartwigsen and Siebner 2012). Many studies have
observed almost comparable bilateral activation during phono-
logical, lexical-semantic, and sentence processing (Sekiyama et al.
2003; Bright et al. 2004; James and Gauthier 2004; Vigneau et al.
2011; Gajardo-Vidal et al. 2018). A study found that semantic
retrieval activated more brain regions in the right hemisphere
than in the left hemisphere, and the degree of activation of the
right ventral lateral prefrontal cortex was significantly correlated
with the semantic constraint level (Vartanian and Goel 2005).
Another study found that Mandarin language learning ability
scores of English speakers were significantly correlated with their
prelearning diffusion tensor imaging measures in right fiber bun-
dles (i.e. the right superior longitudinal fasciculus and the right
inferior longitudinal fasciculus) but not left fiber bundles (Qi et al.
2015).

The above seemingly contradictory findings on language
lateralization (left-lateral vs. bilateral) may be due to the
language network difference between healthy and brain-damaged
individuals (Chang and Lambon Ralph 2020). Some studies have
found that language processing in healthy individuals appeared
to be bilateral but more asymmetrical in the left hemisphere

(Binder et al. 2000; Cogan et al. 2014; Poeppel 2014; Zacà et al.
2018), while previous studies showed that the language processing
was strongly left-lateralized in patients. This phenomenon might
suggest a difference in the left hemisphere which had more
computational capacity in language processing than the right
hemisphere. This difference was reflected more in the white
matter rather than gray matter (Parker et al. 2005; Catani et al.
2007; Bain et al. 2019), potentially contributing to a higher risk of
chronic impairment after the left than the right brain damage.
A previous neurocomputational model has been proposed to
accomplish a unified and comprehensive framework to explain
different language lateralization in healthy and patient individu-
als (Chang and Lambon Ralph 2020). This model suggests that in
healthy individuals, there is an initial discrepancy in language
processing capacity between the left and right hemispheres,
with the left hemisphere taking on more of the computational
load, resulting bilateral but asymmetrical pattern in healthy
people (Chang and Lambon Ralph 2020). In cases where the right
hemisphere was damaged, the left hemisphere might compensate
to restore the lost language function. Similarly, when the left
hemisphere sustained mild damage, other regions within the left
hemisphere and the right hemisphere could collaborate to restore
language function. However, in situations of severe damage
in the left hemisphere, the right hemisphere may not possess
sufficient capacity to fully restore the lost language function
(Chang and Lambon Ralph 2020). This compensatory effect might
be attributed to two mentioned mechanistic frameworks for
language recovery: degeneracy and variable neurodisplacement
(Chang and Lambon Ralph 2020; Stefaniak et al. 2020). Regarding
the degeneracy mechanism (Price and Friston 2002; Chang and
Lambon Ralph 2020; Stefaniak et al. 2020), the language cognitive
function might result from multiple neural networks with distinct
structures, generating a partially adaptable system. When the
brain was damaged, language recovery could be facilitated
through the up-regulation of dormant regions, the utilization
of alternative pathways, or the involvement of nonlanguage
regions that were not typically recruited in the healthy state.
Furthermore, the variable neurodisplacement mechanism
emphasized the necessity to balance metabolic energy costs
against performance demands (Attwell and Laughlin 2001;
Chang and Lambon Ralph 2020). Therefore, when the language
performance demand was not maximum, some regions of the
language network could be down-regulated to conserve energy.
When the performance demand was high or a part of the network
was damaged, these down-regulated regions could be reactivated
for use.

In our study, a group of 99 patients (most of them suffered from
stroke) and a network-based lesion-symptom mapping (NLSM)
method (Li, Song, et al. 2021) were used to investigate this neu-
rocomputational model (Chang and Lambon Ralph 2020). The
NLSM method was chosen as it offered advantages in measur-
ing the whole-brain white matter connectome as opposed to
isolated tracts. It allowed the selection of the subnetwork most
relevant to each attribute from the whole-brain white matter
structural network (Li, Song, et al. 2021). First, the white matter
subnetworks for language processing in the whole group were
measured to find out whether the language processing subnet-
works in patients were consistently left-lateral. Subsequently,
the whole group was divided into three subgroups (left-lesion,
right-lesion, and bi-lesion subgroups) to investigate whether the
impairment and recovery of language function were modulated
by different hemisphere-damage patterns as described in the
model. Given the two mechanism frameworks in consideration
(Stefaniak et al. 2020), the laterality observed in each subnetwork
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merely reflects the profile of that specific subnetwork rather
than the entire language network. Therefore, our tasks involved
a broader range of language processing components as much
as possible. These tasks presented a sentence question related
to a specific attribute (e.g. “Which one is brownish?”) at the
top, followed by two candidate object words (lion or penguin)
at the bottom. This task necessitates multiple cognitive com-
putations and representations, at least including visual input,
orthographic recognition, syntactic encoding, semantic access,
competitor inhibition, and accessing the correct answer (Cutting
et al. 2006). Furthermore, we held six specific attribute tasks (form,
color, motion, sound, manipulation, and function) in language
processing, which could cover more language processing nodes.
Previous studies also found different bilateral and left-lateral pat-
terns in healthy people with five different attributes (form, color,
motion, sound, and manipulation) (Fernandino, Binder, et al. 2016;
Fernandino, Humphries, et al. 2016). These specific attributes
referred to the aspects of conceptual knowledge closely related to
the sensorimotor experiences of objects (e.g. form, color, motion,
sound, and manipulation attributes) rather than sensory input
channels (e.g. vision, hearing, and smell) (Hoffman and Lambon
Ralph 2013; Fernandino, Binder, et al. 2016). To compare with our
language subnetworks in the whole patient group, the nonlan-
guage subnetworks in these specific attributes were also mea-
sured. We anticipated that the nonlanguage subnetworks might
be more bilateral or right-lateral. The lateralization pattern of
each subnetwork was quantitatively assessed using the lateral-
ization index (LI) from three profiles (nodes, edges, and network)
of the subnetwork (Iturria-Medina et al. 2011; James et al. 2015;
Li, Tang, et al. 2021).

Materials and methods
Participants
Ninety-nine patients with brain damage (78 males; ages:
44.37 ± 13.39 years old; formal education: 12.76 ± 3.36 years)
were recruited from the China Rehabilitation Research Center.
Participants did not have any brain injury until at least 1-month
postonset, and most suffered from hemorrhage (n = 30), infarction
(n = 46), or trauma (n = 17). No participants had other neurological
or psychiatric conditions, such as alcoholism, schizophrenia,
or depression. All were native Chinese speakers. Most (n = 93)
were right-handed (Oldfield 1971) (see details in Table 1). Each
patient provided informed written consent. This study was
approved by the Institutional Review Board of the National Key
Laboratory of Cognitive Neuroscience and Learning at Beijing
Normal University.

A dataset of 51 healthy controls was also collected (27 males;
ages: 49.94 ± 10.66 years old; formal education: 13.02 ± 3.85 years;
see details in Supplementary Table 1) to evaluate the impairment
degree of patients’ behavioral performance and to achieve the
task difference validation (details see as below).

Behavioral data collection and preprocessing
We evaluated patients’ ability to process six attributes: form
(i.e. the shape and tactility knowledge of objects), color (i.e.
the typical color knowledge of the objects), motion (i.e. the
visual movement pattern of objects), sound (i.e. the voice or
sound of objects), manipulation (i.e. the knowledge about how
objects can be physically interacted with using our hands), and
function (i.e. the information regarding the use and purpose of
objects). Each attribute was assessed in two tasks (a language
task and a nonlanguage task). These tasks were adapted from
those used in the literature (e.g. Riddoch and Humphreys 1993;

Caramazza and Shelton 1998; Chen et al. 2020). They were an
object attribute matching or verification two-alternative forced
choice (2AFC) task. The subjects responded by selecting an option
using the touch screen in the matching task or by pressing the
“ ” (Yes) or “ ” (No) button in the verification task. The procedure
was run by the DisplayMaster DirectX (DMDX) Windows-based
program (Forster and Forster 2003). The tasks were individually
performed in a quiet testing room. No session lasted longer than
2 h; brief breaks for rest were permitted as needed. The testing
sequence of trials addressing each of six attributes in each task
was pseudorandom, and identical across patients. Subjects were
instructed to respond within 60 s. The first response for each trial
was recorded as the subject’s response.

Language task
The stimuli in each trial were visually presented on a touch screen
in the Chinese language with a question regarding a specific
attribute [e.g. ?” (Which one is brown?)] at the top of
the screen and two candidate object words [e.g. “ ” (lion) or
“ ” (penguin)] at the bottom. The patients were instructed to
select the correct answer from the two candidates for each ques-
tion. The number of trials and an example of each attribute are
given below.

Form matching (n = 75). “ ” (Which one is rectangu-
lar?), “ ” (bracelet) or “ ” (camera);

Color matching (n = 30). “ ” (Which one is black-and-
white?), “ ” (zebra) or “ ” (kangaroo);

Motion matching (n = 30). “ ” (Which one moves more
slowly?), “ ” (elephant) or “ ” (leopard);

Sound matching (n = 45). “ ” (Whose sound is louder?),
“ ” (snail) or “ ” (tiger);

Manipulation matching (n = 30). “ ” (Which one
is manipulated with one hand?), “ ” (thermometer) or “ ”
(necktie);

Functional matching (n = 60). “ ” (Which one is
used for food?), “ ” (rose) or “ ” (celery).

Nonlanguage task
The stimuli were visual grayscale pictures of objects unless other-
wise specified (e.g. a visual video or auditory sound). The number
of trials and an example of each attribute are provided below.

Form verification (n = 60). Subjects were instructed to decide
whether two object parts (e.g. the head of a squirrel and the body
of a monkey) came from the same object.

Color verification (n = 20). Subjects were instructed to decide
whether the color of a color patch (e.g. yellow patch) was common
for an object (e.g. potato).

Motion verification (n = 57). Subjects were instructed to decide
whether a point-light motion animation of an object (e.g. flying of
a bird) was consistent with the action for an object (e.g. dog).

Sound verification (n = 42). Subjects were instructed to decide
whether the sound of an object (e.g. the sound of a ring)
heard via earphone was typically produced by an object
(e.g. camera).

Manipulation matching (n = 20). Subjects were instructed to
decide which of two objects (e.g. axe, match) presented at the
bottom of the screen was more similarly manipulated to an object
(e.g. hammer) at the top of the screen.

Functional matching (n = 30). Subjects were instructed to decide
which of two objects (e.g. necklace, envelope) presented at the
bottom of the screen was more similar in function to the object
(bracelet) at the top of the screen.

For each attribute, we collected the participants’ original
responses and scored them for accuracy. Because our behavioral
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Table 1. Demographics of the 99 patients.

Patient
No.

Sex Age
(year)

Education
(year)

Hand-
edness

Cause of
disease

Patient
No.

Sex Age
(year)

Education
(year)

Hand-
edness

Cause of
disease

1 F 19 12 R TMA 51 M 42 12 R Hem
2 F 22 16 R Hem 52 M 42 14 R Inf
3 F 25 12 R TMA 53 M 43 15 R Inf
4 F 26 9 R Anoxic

encephalopathy
54 M 43 16 R Inf

5 F 35 12 R Inf 55 M 43 19 R Inf
6 F 35 15 L Hem 56 M 45 9 R TMA
7 F 37 9 R TMA 57 M 45 12 R Hem
8 F 37 12 R Inf 58 M 45 15 R Inf
9 F 39 15 R Hem 59 M 45 16 R Inf
10 F 40 12 R TMA 60 M 46 9 R Inf
11 F 40 15 R Inf 61 M 46 12 R Inf
12 F 41 15 R Hem 62 M 46 16 R Inf
13 F 45 9 R TMA 63 M 47 9 R Inf
14 F 45 15 R Inf 64 M 47 12 R TMA
15 F 51 8 R Inf 65 M 47 12 R Inf
16 F 52 6 R Inf 66 M 47 15 R Inf
17 F 56 12 R Hem 67 M 47 16 R Inf
18 F 56 12 R Inf 68 M 47 16 R Hem
19 F 64 12 R Inf 69 M 48 9 R Hem
20 F 70 16 R TMA 70 M 48 15 R Inf
21 F 76 2 R thrombosis 71 M 48 15 R Hem
22 M 19 12 R TMA 72 M 48 19 R Hem
23 M 20 9 mixed TMA 73 M 49 12 R Inf
24 M 20 9 R Hem 74 M 49 15 R Hem
25 M 20 15 R TMA 75 M 49 16 R Hem
26 M 21 12 R TMA 76 M 51 9 R Inf
27 M 22 12 R TMA 77 M 51 15 R Cerebrovascular

disorder
28 M 22 15 R TMA 78 M 52 12 R Inf
29 M 24 9 R TMA 79 M 53 12 R Inf
30 M 26 16 R Inf 80 M 54 16 R Inf
31 M 28 16 R Inf 81 M 55 15 R Inf
32 M 28 16 R Hem 82 M 55 15 R Hem
33 M 30 12 L TMA 83 M 56 2 R Inf
34 M 30 19 R Inf 84 M 56 15 R Inf
35 M 32 12 R electric shock 85 M 57 6 R Inf
36 M 32 15 R Hem 86 M 58 9 R Inf
37 M 34 12 R Hem 87 M 58 12 R Inf
38 M 35 16 R Inf 88 M 58 15 R Inf
39 M 35 16 R Inf 89 M 59 4 R delayed

encephalopathy
40 M 36 15 R Hem 90 M 60 16 R Hem
41 M 36 16 L Hem 91 M 60 16 L Inf
42 M 37 12 R Inf 92 M 61 15 R Hem
43 M 39 12 L Hem 93 M 62 12 R Inf
44 M 40 8 R TMA 94 M 63 12 R Inf
45 M 40 12 R Hem 95 M 65 9 R Inf
46 M 40 15 R Hem 96 M 67 9 R Inf
47 M 40 16 R Hem 97 M 67 12 R Thrombosis
48 M 40 16 R Hem 98 M 70 12 R Inf
49 M 41 9 R Hem 99 M 74 12 R Hem
50 M 41 15 R Hem

Note. F = female; M = male; L = left-handed; R = right-handed; TMA = trauma; Hem = hemorrhage; Inf = infarction.

tasks contained different item numbers, comparing patients’
performance by raw scores might not be appropriate. To address
this, a normalization process for raw scores within each task was
performed among the patient group. We calculated the z score by
the following formula:

z = X − μ

σ
,

where X is the raw data, μ and σ are the mean value and standard
deviation (SD) of the group in each task. These z-scores were used
in the following analyses.

Imaging data collection and preprocessing
Patients were scanned at the China Rehabilitation Research Cen-
tre using an 8-channel split head coli 1.5 T GE SIGNA EXCITE
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scanner. Three types of images were collected: (i) T1-weighted 3D
gradient echo images with magnetization-prepared rapid gradi-
ent echo acquisition, (ii) T2-weighted fluid attenuated inversion
recovery images, and (iii) diffusion-weighted images (DWI). The
T1 images were collected in the sagittal plane using the follow-
ing parameters: a matrix size of 512 × 512, field of view (FOV)
of 250 × 250 mm2, voxel size of 0.49 × 0.49 × 0.70 mm3, repeti-
tion time (TR) of 12.26 ms, echo time (TE) of 4.2 ms, inversion
time of 400 ms, flip angle of 15◦, and 248 slices. Two identical
sequences of T1 images were acquired, and the average of the
images was used to increase the signal-to-noise ratio in our
analyses. The T2 images were used as a visual reference for
manually drawing precise lesion contours on the T1 images. They
were collected in the axial plane with the following parameters:
a matrix size of 512 × 512, FOV of 250 × 250 mm2, voxel size of
0.49 × 0.49 × 5 mm3, TR of 8002 ms, TE of 129.57 ms, inversion
time of 2 s, flip angle of 90◦, and 28 slices. Two DWI sequences in
different directions (n = 15 and 17) were collected to increase the
direction number. Each sequence adopted the following param-
eters: a matrix size of 128 × 128, FOV of 250 × 250 mm2, voxel
size of 1.95 × 1.95 × 2.6 mm3, TR of 13,000 ms, TE of 69.3 ms,
inversion time of 0 s, flip angle of 90◦, and 53 slices. The first two
volumes were b0 volumes, and the b-value of other volumes was
1000 s/mm2 in each sequence. We scanned twice of the T1 and
DWI images to improve their quality.

Using MATLAB software, images of each patient were pre-
processed with the following main steps (Han et al. 2013).
(i) Each of the two T1 images was coregistered to the same
native space using the trilinear interpolation method, and then,
images were averaged using Statistical Parametric Mapping
(SPM5) software (https://www.fil.ion.ucl.ac.uk/spm/). (ii) The T2

images were coregistered and resliced to align with the averaged
T1 images. Two skilled individuals (Chen J and Feng T) visually
drew the lesion contours on the average T1 images slice-by-slice,
referring to the T2 images as needed. (iii) The T1 images were
normalized into Talairach space in BrainVoyager QX v2.0 (Goebel
2012) and the Advanced Normalization Tools (ANTs) software
package (Tustison et al. 2014). We used BrainVoyager QX v2.0
(www.brainvoyager.com) to accurately and manually delineate
each patient’s lesion contour. Because this software was based on
neuroimages in the Talairach space, we utilized the ANTs (http://
www.picsl.upenn.edu/ANTS/) software package to extract the
affine transformation matrix between the native and Talairach
spaces. (iv) This transformation matrix was then employed to
register and transform the lesion description into the Talairach
space using the “WarpImageMultiTransform” program, and the T1

images were further transformed into the Montreal Neurological
Institute (MNI) space. (v) The two DWI sequences were combined
into one single nifty-1 format file, and then, the diffusion-
weighted gradient tables of the two sequences were combined. (vi)
The DWIs were further processed with the following stages using
the pipeline for analyzing brain diffusion images (Cui et al. 2013),
which entailed used of Brain Extraction Tool (BET) function to
remove the skull, the Eddycorrect function to correct eddy current
distortions, and the Diffusion Tensor Imaging Fit command to
fit a diffusion tensor model at each voxel and build diffusion
tensor models. Executing BET produced fractional anisotropy (FA)
maps in the individual space, which were registered using ANTs
(version 1.9) with the functional magnetic resonance imaging of
the brain FA template in the MNI space. The FA maps were then
normalized with a linear rigid affine and nonlinear transform
registration.

NLSM analysis
The NLSM method (Li, Song, et al. 2021) was applied to determine
the optimal white matter subnetwork underlying the processing
of each attribute from the whole-brain network. It included the
following main steps (Li, Song, et al. 2021).

Construction of the whole-brain white matter network of
each patient
Since brain damage in patients often led to abnormal diffusion
signals, we chose an approach based on the healthy population
atlas to mitigate data quality issues (Oishi et al. 2009; Preti et al.
2012; Lin et al. 2015; Gleichgerrcht et al. 2017; Schilling et al. 2019).
A white matter connectome atlas in MNI space was extracted
from data of 842 healthy people in the Human Connectome
Project (Yeh et al. 2018; Griffis et al. 2020). For each patient,
we first identified the spared fibers in the healthy atlas, which
bypassed the brain lesion mask of the patient using DSI studio
software. Then, a spared network was reconstructed by extracting
the spared fibers between each pair of 90 gray matter regions
in the Automated Anatomical Labeling atlas (AAL90 without the
cerebellum, Tzourio-Mazoyer et al. 2002; Zou et al. 2018). Finally,
the FA network was created by masking all fibers in each pair
of regions that had spared fibers and calculating the mean FA
value in the tract mask (i.e. averaged FA values based on the
DWI data of each voxel of the mask per patient). The FA value
of a tract connecting the two regions reflected the white matter
connectivity strength of that tract. As a result, a whole-brain FA
network containing 90 regions (i.e. a 90 × 90 matrix) was obtained
for each patient.

Identification of the subnetworks underlying each attribute
processing in language and nonlanguage tasks
The whole-brain FA network (90 × 90 nodes) could be divided into
∼1.24 × 1027 subnetworks (containing between 2 and 90 nodes).
The purpose of this analysis was to identify the subnetwork
with the information exchange ability that could best explain
the behavioral variation (Sbhv) among the 99 patients process-
ing each attribute in language or nonlanguage tasks. Here, the
global efficiency (Ew) of each subnetwork here was treated as the
index of information exchange ability for subnetwork (Latora and
Marchiori 2001), which was calculated using the following for-
mula (Latora and Marchiori 2001; Rubinov and Sporns 2010):

EW = 1
n

∑
i∈N

∑
j∈N,j �=i

(
dw

ij

)−1

n − 1
,

where N is the set of regions in the subnetwork, n is the number
of regions, and dw

ij is the weighted shortest path length between
regions i and j (Rubinov and Sporns 2010). Thus, the objective
function of the relationship between Sbhv and Ew for a given
subnetwork in the patients could be expressed in the following
regression equation:

Sbhv = α· EW + β + ε,

where α and β are the regression coefficients, and ε is the
error term.

To quantitatively measure the relationship between Sbhv and
Ew, we further calculated the explanatory power (R2) of Ew with

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/1/bhad437/7455239 by guest on 18 January 2024

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
www.brainvoyager.com
www.brainvoyager.com
www.brainvoyager.com
http://www.picsl.upenn.edu/ANTS/
http://www.picsl.upenn.edu/ANTS/
http://www.picsl.upenn.edu/ANTS/
http://www.picsl.upenn.edu/ANTS/
http://www.picsl.upenn.edu/ANTS/
http://www.picsl.upenn.edu/ANTS/


6 | Cerebral Cortex, 2024, Vol. 34, No. 1

regard to Sbhv for each subnetwork using the following equation:

R2 = 1 −
∑nsub

i=1

(
yi − fi

)2

∑nsub
i=1

(
yi − y

)2 ,

where yi is an observed value (behavioral scores), y is the mean
value of all yi, fi is the predicted behavioral value corresponding
to the minimum ε value in the previous equation, and nsub is the
number of all patients. Thus, an R2 value could be calculated for
each subnetwork. A higher R2 corresponded to a higher explana-
tory power of the subnetwork for behavioral scores. Therefore, we
attempted to find the subnetwork with the maximum R2 value
among all 1.24 × 1027 subnetworks for each attribute behavior.

The number of potential subnetworks for the whole-brain
network was too large to be exhaustively examined under the
present conditions. To reduce the computation time, we adopted
a genetic algorithm (GA; Goldberg 1989), which was able to obtain
approximate results in less computation time.

Ultimately, we obtained the optimal subnetwork underlying
processing of each of the six attributes in language or non-
language tasks, having the highest R2 value, and the most
explanatory power for the attribute scores. We obtained 12
attribute-relevant subnetworks corresponding to the processing
of the six attributes in each of the language and nonlanguage
tasks. For all optimal subnetworks, we implemented the false
discovery rate (FDR) correction (Benjamini and Hochberg 1995;
Benjamini and Yekutieli 2001, 2005).

Subnetwork lateralization measurement
To investigate the lateralization of each attribute-relevant subnet-
work obtained by the above analyses, we calculated the LI of the
subnetwork using the formula:

LI =
(∑

Xleft − ∑
Xright

)
(∑

Xleft + ∑
Xright

) ,

where Xleft and Xright are the values of a given index in the left
and right hemispheres within the subnetwork, respectively (Wilke
and Lidzba 2007). We investigated three indices: the node number,
edge number, and sum of nodal degrees of the subnetwork (Itur-
ria-Medina et al. 2011; James et al. 2015; Li, Tang, et al. 2021). The
nodal degree (ki) of each node was used to reflect how well a node
is connected in the network and computed using the following
formula (Rubinov and Sporns 2010; Zhao et al. 2017):

ki =
∑
i,j∈N

aij,

where i, j are the nodes and aij is the connection coefficient
between i and j.

The LI value ranges from −1 to +1. Following previous criteria
(Briellmann et al. 2006; Wilke and Lidzba 2007), LI values <−0.20,
−0.20–0.20, or >0.20 reflected right-lateralized, bilateral-, or left-
lateralized subnetworks, respectively.

Validation of the subnetworks
To determine whether each attribute subnetwork obtained from
the above analyses was reliable, we further performed the four fol-
lowing validation analyses: examining whether each subnetwork
had the issues of task differences, random chance, overfitting, or
method problems.

The task difference problem
The processing ability of each of the six attributes was tested
using a 2AFC paradigm regardless of whether the task was a lan-
guage and or nonlanguage task. Subjects’ response method was
different between language and nonlanguage tasks (matching
vs. verification) for four of the attributes. Therefore, asymmetric
differences among the 12 attribute-relevant subnetworks might
arise from task differences instead of cognitive differences. To test
this possibility, each raw accuracy of each patient was normalized
as a t value using data from 51 healthy controls (Crawford and
Garthwaite 2006; Han et al. 2013; Chen et al. 2020). The corrected
t value reflected the degree of severity of deficits in the attribute
and may resolve the task difference problem to some extent (see
details of this method in Crawford and Garthwaite 2006; Han et al.
2013). In summary, for each task, we initially established a regres-
sion model using data from the healthy control group. The model
employed accuracy scores as the dependent variable and included
predictors such as age, gender, and years of formal education.
By integrating each patient’s demographic information into the
model, we derived a predicted accuracy score, which enabled us
to calculate a discrepancy value (Discrepancypatient) by contrast-
ing observed accuracy with predicted accuracy. Subsequently, we
calculated a corrected standard error of estimate (SEpatient) for
each patient. The patient’s t-score was then computed using the
formula:

t − scorepatient = Discrepancypatient

SEpatient
.

Therefore, the NLSM analysis was repeated using the corrected
t-scores as behavioral scores. We compared the structure and
LI values between the original and new subnetworks for each
attribute.

The random chance problem
A permutation test was used to inspect whether each subnetwork
was obtained by random chance. We repeated the NLSM analysis
as described above, except that the behavioral scores of the
99 patients were randomly paired with another patient’s brain
images. These R2 values from the permuted data were compared
with the R2 values from the above actual data (using the Wilcoxon
rank sum test).

The overfitting problem
K-fold cross validation was used to estimate whether the above
procedure had an overfitting problem. In our analysis, the K value
was 11 (each fold had 9 patients). For each attribute, we examined
whether the objective function, which was established with data
from 90 patients, could predict the performance of the remaining
9 patient when his or her imaging data were introduced into the
function. Specifically, we first conducted the NSLM analysis as
described above except that the behavioral and imaging data of
99 patients were replaced with those of 90 patients. The objective
function with the maximum R2 value was selected as the testing
function. Then, we input the imaging data from the remaining 9
patient into the testing function and obtained the predicted score
of the patient. Thus, we obtained a predicted behavioral score for
each patient. Finally, we computed the correlation values between
the actual and predicted values in the specific node value (the
node number for the z score attribute subnetwork) of the optimal
subnetwork for each attribute across the 99 patients. The root
mean squared error (RMSE) is an indicator that can measure the
model performance, for the value from 0 to +∞. We calculated
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RMSE using the following formula (Chai and Draxler 2014):

RMSE =
√√√√ 1

n

n∑
i=1

e2
i ,

where n is the samples of the model, and e is the errors. A lower
RMSE score indicates better model performance (Chai and Draxler
2014). We run the 11-fold cross-validation three times to get the
highest R value and the average RMSE value.

The method problem
We compared the NLSM with the univariate and multivariate
white matter analysis, to check whether the NLSM was more
robust than the previous analysis methods. In univariate analysis,
we conducted tract-based correlations (van Kooij et al. 2012)
between each tract and behavioral performance to identify the
highest correlated tracts. In multivariate analysis, we ran the
nonnegative matrix factor (NMF) analysis (Lange et al. 2004;
Sotiras et al. 2015, 2017; Bouchard et al. 2022). Specifically, the
NMF method was used for dimension reduction in the matrix
X of 998 tracts × 99 patients. For each component value, the
matrix could be divided into two submatrices, denoted as W
and H. Reconstruction error was measured by the difference
between X and W × H (Bouchard et al. 2022). To measure the
reproducibility, the data were divided into two split samples with
similar demographic information and ran the NMF instructions
at the same component value (we randomly deleted one person
so that the matrix could be split in half and repeated a hundred
times). Then, a Hungarian algorithm (Kuhn 1955) was used to
match the two samples and the inner-product (range from 0 to
1) was also used to calculate the overlap between the two split
samples (Bouchard et al. 2022). The reproducibility value for each
component was determined as the median inner-product value.

Subnetwork analysis for subgroups
As mentioned in the neurocomputational model, the whole
patient group exhibited diverse hemispheric-injury patterns,
which might have different contributions to our results due to
the recovery mechanism (Chang and Lambon Ralph 2020). To
account for the lateralization pattern in different hemispheric-
injury subgroups, we divided the whole patient group into three
subgroups (left-lesion, bi-lesion, and right-lesion subgroups).
Then, we utilized their z scores to run the NLSM method
and calculate the LI values. To determine whether the lateral
modulation effect was specific to different lesion hemispheres, we
also measured the effect concerning different etiology. Regarding
lesion etiology, we also divided the whole patient group into three
subgroups (infarction, hemorrhage, and trauma subgroups). Then,
we used their z scores to run the NLSM method and calculate
the LI values. In this analysis, we calculated subnetworks for all
language and nonlanguage attributes, but we more focused on
the language subnetworks.

Results
Behavioral performance
The response accuracies in language and nonlanguage tasks
for each of six attributes were illustrated in Fig. 1. Compared
with the healthy controls, the patients’ ability to process each
attribute was impaired in both the language task (healthy
controls: 93% ± 7% vs. patients: 84% ± 13%; t = 11.243, P < 0.001)
and nonlanguage task (83% ± 13% vs. 72% ± 19%; t = 9.636,

Fig. 1. Raw accuracy rate of each attribute in language and nonlanguage
tasks. Error bars indicate the SD. ∗P < 0.05; ∗∗∗P < 0.001.

P < 0.001). All the attributes except for manipulation showed
larger impairments in the nonlanguage task than the language
task: form (language task: 86% ± 12% vs. nonlanguage task:
75% ± 12%; t = 7.92, P < 0.001), color (84% ± 14% vs. 63% ± 17%;
t = 14.71, P < 0.001), motion (84% ± 11% vs. 52% ± 18%; t = 17.49,
P < 0.001), sound (78% ± 11% vs. 73% ± 14%; t = 4.19, P < 0.001),
and function (92% ± 9% vs. 89% ± 13%; t = 2.43, P < 0.05). The
manipulation attribute reflected similar levels impairment
between the two tasks (81% ± 15% vs. 80% ± 15%; t = 0.89, P > 0.10).
The Supplementary Table 2 encompassed the mean values, SDs,
and ranges of the participants’ raw data.

For raw scores, we calculated the correlation between the 12
attribute tasks (see Supplementary Fig. 1). We found that the
correlation between each pair of tasks was significant (FDR cor-
rected, qs < 0.05). Moreover, the correlations between the language
tasks (range: 0.59–0.83) were especially significant (FDR corrected,
qs < 0.001).

Whole-brain white matter connection of patients
The lesions of the patients were widely distributed in the whole
brain, and most patients had lesions in the insula and its sur-
rounding neural tissues (Fig. 2a). In the whole brain network of 90
AAL nodes, there were 998 tracts in 842 healthy participants (Yeh
et al. 2018; Griffis et al. 2020). Across the 99 patients, all but four
tracts (n = 994) had lesions (Fig. 2b). The damaged tracts included
303 left intratracts, 250 right intratracts, and 441 intertracts that
connected regions in the left hemisphere, the right hemisphere,
and both hemispheres, respectively. The number of intertracts
was statistically equivalent with that of left intratracts (χ2 = 2.90,
P = 0.09) and right intratracts (χ2 = 3.51, P = 0.06). However, the
numbers of left and right intratracts were comparable (χ2 = 0.04,
P = 0.85). Most tracts (99.6% of these tracts) were lesioned in at
least one patient (99.3% of left intratracts; 99.2% of right intra-
tracts; and 100% of intertracts).

Subnetworks underlying each attribute
processing and their laterization
The R value of all our optimal subnetwork results was overviewed
in Table 2. In Table 2, only two subnetworks were uncorrected, two
subnetworks were FDR corrected q < 0.10, and other subnetworks
were all FDR corrected q < 0.05, which means our results were
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Fig. 2. Lesion overlap maps for each voxel and each white matter tract across 99 patients. The n value of each voxel in Fig. 2a or each tract in Fig. 2b
denotes the number of patients with lesions in that voxel or tract. The tracts in Fig. 2b connect the 90 AAL regions. Details about the regions are provided
in Supplementary Table 3.

reliable. The LI values (node LI, edge LI, and network LI) of all
our optimal subnetwork results were overviewed in Supplemen-
tary Table 4. In language subnetworks, most subnetworks showed
the left-lateral pattern except for the left-lesion subgroup.

Applying the NLSM method (Li, Song, et al. 2021), we identified
12 subnetworks supporting the 6 attributes with respect to lan-
guage and nonlanguage tasks. Three LI values were calculated for
each subnetwork corresponding to its node number, edge number,
and the sum of the nodal degrees (Figs. 3 and 4).

Overall, for most attributes, the subnetworks corresponding to
the language task than nonlanguage task contained more nodes
(form: 11 vs. 8; color: 10 vs. 6; motion: 8 vs. 8; sound: 13 vs. 7;
manipulation: 10 vs. 10; function: 6 vs. 6) and more edges (form: 20
vs. 8; color: 11 vs. 7; motion: 11 vs. 7; sound: 17 vs. 5; manipulation:
11 vs. 7; function: 6 vs. 6). This finding demonstrates that the
subnetworks for the language task than those in nonlanguage
task had more complicated anatomical structure.

The LI values of subnetworks in the language task were con-
sistently higher than 0.20 (node LI: 0.33–1; edge LI: 0.67–1; nodal
degree LI: 0.67–1) (see Fig. 3 and Supplementary Table 4). This
suggests that language processing of each of the six attributes was
supported by a left-lateralized subnetwork. In the nonlanguage
task (see Fig. 4 and Supplementary Table 4), LI values of subnet-
works for three of attributes (color, manipulation, function) were
higher than 0.20 (node LI: 0.60–1; edge LI: 0.71–1; nodal degree
LI: 0.71–1), indicating strongly left lateralization of these subnet-
works. Those of the form attribute were lower than −0.20 (node
LI: −0.25; edge LI: −0.38; nodal degree LI: −0.43), indicating the
right lateralization of these subnetworks. Those of the motion and
sound attributes ranged from −0.20 to 0.20 (node LI: 0–0.14; edge
LI: 0–0.20; nodal degree LI: 0–0.20), indicating the bilateralization
of these subnetworks. We conducted an additional group analysis
consisting all right-handed individuals (excluding 6 patients) to
assess the potential influence of handedness on the lateralization

pattern. These results (see Supplementary Figs 2 and 3; Table 2
and Supplementary Table 4) demonstrated that the language
and nonlanguage lateralization patterns were consistent with
the subnetworks in 99-patient group. Furthermore, subnetworks
removed patients who were not impaired in each attribute task
was measured, and showed the highly similar lateralization pat-
terns (see Supplementary Figs 4 and 5). The two additional analy-
ses declared that the handedness and ceiling effect might had no
influence on the lateralization patterns.

Validation analysis results
The task difference problem
The NLSM analysis using the corrected-t scores instead of the
normalized behavioral accuracy obtained an additional 12 sub-
networks and their LIs were calculated (see Figs. 5 and 6 and
Supplementary Table 4). These new subnetworks and their R
values were highly similar to those obtained from normalized
accuracy data (see Table 2 and Figs. 3 and 4). Specifically, for
language and nonlanguage attributes, the overall numbers of
nodes and edges between z score and t score subnetworks were
similar, and the overlap rate of the nodes between them was high
(see Table 3). More importantly, the lateralization of each attribute
subnetwork except for the nonlanguage form attribute subnet-
work was consistent between old and new subnetworks (see
Supplementary Table 4). The LI values of each t score subnetwork
in the language task were consistently higher than 0.20 (node
LI: 0.56–1; edge LI: 0.88–1; nodal degree LI: 0.88–1). This suggests
that language processing of each of the six attributes was sup-
ported by a left-lateralized subnetwork. In the nonlanguage task
of t score, the LI values of three attributes (color, manipulation,
function) were higher than 0.20 (node LI: 0.56–1; edge LI: 0.67–1;
nodal degree LI: 0.67–1), indicating left lateralization of these
subnetworks. Those of form, motion, and sound attributes (except
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Fig. 3. The optimal subnetwork for the whole patient group (n = 99) underlying the processing of each language attribute processing and its LI.
The correlation plot illustrates a relationship between the global efficiency of patients’ networks and their performance. ACG = anterior cingulate
and paracingulate gyrus; AMYG = amygdala; CAL = calcarine fissure and surrounding cortex; CAU = caudate nucleus; DCG = median cingulate and
paracingulate gyrus; HES = heschl gyrus; IFGoperc = inferior frontal gyrus, opercular part; IFGtriang = inferior frontal gyrus, triangular part; INS = insula;
IOG = inferior occipital gyrus; ITG = inferior temporal gyrus; LING = lingual gyrus; MFG = middle frontal gyrus; MOG = middle occipital gyrus; MTG = middle
temporal gyrus; OLF = olfactory cortex; ORBinf = inferior frontal gyrus, orbital part; PAL = lenticular nucleus, pallidum; PCG = posterior cingulate
gyrus; PHG = parahippocampal gyrus; REC = gyrus rectus; ROL = rolandic operculum; SMA = supplementary motor area; SOG = superior occipital gyrus;
STG = superior temporal gyrus; THA = thalamus; TPOsup = temporal lobe: superior temporal gyrus.
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Fig. 4. The optimal subnetwork for the whole patient group (n = 99) underlying the processing of each nonlanguage attribute processing and its
LI. The correlation plot illustrates a relationship between the global efficiency of patients’ networks and their performance. ANG = angular gyrus;
HIP = hippocampus; ORBmid = middle frontal gyrus, orbital part; PoCG = postcentral gyrus; PUT = lenticular nucleus, putamen; SFGdor = superior frontal
gyrus, dorsolateral; SFGmed = superior frontal gyrus, medial. The complete names of the other abbreviations are provided in previous figure.
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Table 2. FDR-corrected significance of R values for the optimal subnetworks across various patient subgroups.

Attribute Whole
patient
group
using z
scores
(n = 99)

Whole
patient
group
using t
scores
(n = 99)

Right-
handed
subgroup
(n = 93)

Trauma
subgroup
(n = 17)

Infarction
subgroup
(n = 46)

Hemor-
rhage
subgroup
(n = 30)

Left-lesion
subgroup
(n = 37)

Right-
lesion
subgroup
(n = 23)

Bi-lesion
subgroup
(n = 39)

Language Form 0.67∗∗∗ 0.69∗∗∗ 0.68∗∗∗ 0.93∗∗∗ 0.71∗∗∗ 0.89∗∗∗ 0.66∗∗∗ 0.69∗∗ 0.83∗∗∗

Color 0.59∗∗∗ 0.62∗∗∗ 0.61∗∗∗ 0.93∗∗∗ 0.74∗∗∗ 0.84∗∗∗ 0.57∗ 0.61∗ 0.79∗∗∗

Motion 0.62∗∗∗ 0.63∗∗∗ 0.65∗∗∗ 0.91∗∗∗ 0.75∗∗∗ 0.73∗∗∗ 0.75∗∗∗ 0.60∗ 0.63∗∗

Sound 0.62∗∗∗ 0.64∗∗∗ 0.65∗∗∗ 0.86∗∗∗ 0.73∗∗∗ 0.72∗∗ 0.73∗∗∗ 0.59∗ 0.75∗∗∗

Manipula-
tion

0.68∗∗∗ 0.68∗∗∗ 0.68∗∗∗ 0.94∗∗∗ 0.75∗∗∗ 0.88∗∗∗ 0.68∗∗∗ 0.67∗∗ 0.85∗∗∗

Function 0.60∗∗∗ 0.63∗∗∗ 0.62∗∗∗ 0.84∗∗ 0.68∗∗∗ 0.80∗∗∗ 0.61∗∗ 0.55# 0.77∗∗∗

Nonlan-
guage

Form 0.57∗∗∗ 0.55∗∗∗ 0.56∗∗∗ 0.84∗∗ 0.70∗∗∗ 0.78∗∗∗ 0.66∗∗∗ 0.68∗∗ 0.77∗∗∗

Color 0.49∗∗∗ 0.48∗∗∗ 0.50∗∗∗ 0.87∗∗ 0.57∗∗ 0.75∗∗∗ 0.63∗∗ 0.57∗ 0.71∗∗∗

Motion 0.62∗∗∗ 0.59∗∗∗ 0.61∗∗∗ 0.91∗∗∗ 0.66∗∗∗ 0.74∗∗∗ 0.53∗ 0.74∗∗ 0.79∗∗∗

Sound 0.54∗∗∗ 0.49∗∗∗ 0.53∗∗∗ 0.92∗∗∗ 0.67∗∗∗ 0.56# 0.42 0.70∗∗ 0.85∗∗∗

Manipula-
tion

0.66∗∗∗ 0.64∗∗∗ 0.68∗∗∗ 0.72∗ 0.67∗∗∗ 0.84∗∗∗ 0.67∗∗ 0.49 0.80∗∗∗

Function 0.68∗∗∗ 0.68∗∗∗ 0.70∗∗∗ 0.91∗∗∗ 0.73∗∗∗ 0.88∗∗∗ 0.76∗∗∗ 0.80∗∗∗ 0.86∗∗∗

Note. #false discovery rate (FDR)-corrected q < 0.10; ∗q < 0.05; ∗∗q < 0.01; ∗∗∗q < 0.001.

Table 3. The comparison between results of z and t scores.

The number of nodes The number of edges

z score t score Common
nodes

z score t score Common
edges

Language Form 11 11 9 20 17 14
Color 10 11 10 11 12 11
Motion 8 11 5 11 15 4
Sound 13 13 8 17 16 6
Manipulation 10 10 9 11 12 9
Function 6 9 6 6 16 6

Nonlanguage Form 8 7 5 8 8 4
Color 6 6 6 7 7 7
Motion 8 8 4 7 12 3
Sound 7 8 6 5 5 4
Manipulation 10 9 8 7 6 5
Function 6 6 6 6 6 6

for the node LI of sound attribute was 0.25) ranged from −0.20 to
0.20 (node LI: −0.14–0; edge LI: −0.13–0.20; nodal degree LI: −0.14–
0.20), indicating the bilateralization of these subnetworks. These
results demonstrate that the asymmetric differences among the
12 attribute-relevant subnetworks might arise from the differ-
ences in representations of cognition rather than tasks.

The random chance problem
We repeated the NLSM analysis as above, except that each
patient’s behavioral score was randomly matched with the
brain imaging data of a different patient. Thus, we obtained a
new set of R2 values from the permuted subnetworks for each
attribute. For all the language attributes, these permuted R2

values were found to be significantly lower than those of the
actual subnetworks using the Wilcoxon rank sum test (form:
0.08 ± 0.05 vs. 0.44 ± 0.01, Z = 63.24, P < 0.001; color: 0.08 ± 0.05 vs.
0.33 ± 0.02, Z = 63.21, P < 0.001; motion: 0.08 ± 0.05 vs. 0.38 ± 0.01,
Z = 63.25, P < 0.001; sound: 0.37 ± 0.01 vs. 0.37 ± 0.01, Z = 63.24,
P < 0.001; manipulation: 0.0785 ± 0.05 vs. 0.44 ± 0.02, Z = 63.24,
P < 0.001; function: 0.08 ± 0.05 vs. 0.36 ± 0.01, Z = 63.27, P < 0.001;

see Fig. 5). For all the nonlanguage attributes, these permuted R2

values were also found to be significantly lower than those of the
actual subnetworks (form: 0.08 ± 0.05 vs. 0.31 ± 0.01, Z = 63.21,
P < 0.001; color: 0.08 ± 0.04 vs. 0.23 ± 0.01, Z = 62.67, P < 0.001;
motion: 0.07 ± 0.04 vs. 0.37 ± 0.01, Z = 63.24, P < 0.001; sound:
0.08 ± 0.04 vs. 0.26 ± 0.03, Z = 63.03, P < 0.001; manipulation:
0.07 ± 0.05 vs. 0.41 ± 0.02, Z = 63.24, P < 0.001; function: 0.09 ± 0.06
vs. 0.44 ± 0.02, Z = 63.14, P < 0.001; see Fig. 6). These findings
demonstrated that these attribute subnetworks were not obtained
through random chance.

The overfitting problem
We used data from 90 patients to build the model, and the
remaining 9 patient’s data were used to conduct a test at the
specific node value in attribute task. For each patient, we obtained
a predicted behavioral score for each attribute task for the specific
node value of the optimal network. For the attributes in the
language task, the predicted scores were significantly correlated
with the actual scores across the 99 patients for the specific
node value of the optimal subnetwork (form: n = 11, R = 0.51,
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Fig. 5. Results of the validation analyses of language attribute networks. The left three columns show the correct t score results underlying language
attribute processing and their LIs. The right two columns show the permutation and 11-fold results of the validation analyses for subnetworks underlying
language attribute processing. The correlation plot demonstrates that the global efficiency of patients’ networks can significantly correlate with their
performance. The N value in the final column is the optimal node value in z score results. FFG = fusiform gyrus; SMG = supramarginal gyrus. The complete
names of the other abbreviations are provided in previous figures.

P < 0.001, average RMSE = 0.90; color: n = 10, R = 0.36, P < 0.001,
average RMSE = 0.97; motion: n = 8, R = 0.48, P < 0.001, average
RMSE = 0.91; sound: n = 13, R = 0.42, P < 0.001, average RMSE = 0.95;
manipulation: n = 10, R = 0.50, P < 0.001, average RMSE = 0.92;
function: n = 6, R = 0.48, P < 0.001, average RMSE = 0.92; see Fig. 5).
For nonlanguage attributes, the predicted scores were also
significantly correlated with the actual scores across the 99
patients for the specific node value of the optimal subnetwork
(form: n = 8, R = 0.36, P < 0.001, average RMSE = 0.97; color: n = 6,
R = 0.26, P < 0.05, average RMSE = 1.01; motion: n = 8, R = 0.47,
P < 0.001, average RMSE = 0.94; sound: n = 7, R = 0.36, P < 0.001,
average RMSE = 0.96; manipulation: n = 10, R = 0.45, P < 0.001,
average RMSE = 0.95; function: n = 6, R = 0.44, P < 0.001, average
RMSE = 1.00; see Fig. 6). These results suggest that the NLSM
procedures used to obtain the attribute subnetworks should not
have an overfitting problem.

The method problem
For univariate analysis, the 10 most significant tracts associ-
ated with each attribute were selected as representative tracts
for that attribute, the highest R value, and the LI value was in
Supplementary Table 5. In language tasks, the LI consistently
indicated a left-lateral pattern. However, in nonlanguage tasks,

the LI exhibited diverse patterns: left-lateral for color, manipula-
tion, and function; bilateral for sound; and right-lateral for form
and motion tasks. For multivariate analysis, we finally selected
7 components based on their peak reproducibility and proximity
to the lowest reconstruction error (Bouchard et al. 2022). Each
tract had a weighted value in each component. We then calcu-
lated the LI values in each component by the tract weight and
measure the correlation between patients’ behavioral z scores
and the tract component weight in patients to find the highest
correlation component for each task (see Supplementary Table 5).
We found in language tasks that the six tasks were all left-lateral
(LI = 1). For nonlanguage tasks, four tasks were left-lateral (color,
sound, manipulation, and function attributes) and two tasks were
right-lateral (form and motion attributes). These lateralization
patterns for univariate and multivariate analysis were similar to
that of NLSM. The two-way ANOVA analysis (factoring in lan-
guage and nonlanguage task type × univariate, multivariate, and
NLSM method) revealed significant main effects in both task
types (F = 9.334, P < 0.05) and methods (F = 25.679, P < 0.001), with
no observed interaction. One-way ANOVA analysis indicated sig-
nificant method main effects in all tasks (F = 20.937, P < 0.001).
Post hoc tests (see Supplementary Fig. 6) indicated that in both
language and all tasks, the R value of NLSM was significantly
higher than that of the univariate and multivariate methods.
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Fig. 6. Results of the validation analyses of nonlanguage attribute networks. The left three columns show the correct t score results underlying
nonlanguage attribute processing and their LIs. The right two columns show the permutation and 11-fold results of the validation analyses for
subnetworks underlying nonlanguage attribute processing. The correlation plot demonstrates that the global efficiency of patients’ networks can
significantly correlate with their performance. The N value in the final column is the optimal node value in z score results. The complete names
of the abbreviations are provided in previous figures.

For nonlanguage tasks, the NLSM was significantly higher than
the multivariate method. These findings demonstrate that the
NLSM holds distinct advantages in identifying behaviorally rele-
vant subnetworks when compared with traditional univariate and
multivariate white matter tracts analyses.

Subnetwork analysis for subgroups
We observed that among the patients, 37 exhibited lesions only
in the left hemisphere (whose lesion tracts in right hemisphere
was less than 2, and referred to as the left-lesion subgroup), 23
patients displayed lesions solely in the right hemisphere (whose
lesion tracts in left hemisphere was less than 2, and referred to as
the right-lesion subgroup), and 39 patients demonstrated lesions
in both hemispheres (referred to as the bi-lesion subgroup). The
three subgroups did not have a statistical significance (χ2 = 4.61,
P = 0.10). The lesioned intertracts number in bi-lesion subgroup
was indeed the highest in three subgroups and was significantly
higher than the left subgroup (see Supplementary Table 6).

For the language subnetworks of patient lesion subgroups (see
Fig. 7 and Supplementary Table 4), patients with bilateral lesions
exhibited left-lateralized subnetworks across all six attributes
(node LI: 0.78–1; edge LI: 0.79–1; nodal degree LI: 1). Patients
with left hemisphere lesions demonstrated bilateral or right-
lateralized subnetworks except for the color attribute (node LI:

−0.45–0; edge LI: −0.50–−0.09; nodal degree LI: −0.60–−0.14; LIs
in color attribute: 0.33), while patients with right hemisphere
lesions displayed bilateral or left-lateralized subnetworks except
for the sound attribute (node LI: 0–1; edge LI: 0–1; nodal degree
LI: 0–1; LIs in color attribute: −1). These results indicated that
lesion in different hemispheres would influence the lateralization
pattern in patients and strongly supported the predictions of this
neurocomputational model (Chang and Lambon Ralph 2020). In
nonlanguage subnetworks, the lateralization patterns also tended
to transfer into the hemisphere which was undamaged (see Sup-
plementary Table 4).

Furthermore, we observed that among the patients, 30 patients
suffered lesions from hemorrhage (referred to as the “hemorrhage
subgroup”), 46 patients suffered lesions from infarction (referred
to as the “infarction subgroup”), and 17 suffered lesions from
trauma (referred to as the “trauma subgroup”). For different
etiology in language subnetworks (see Supplementary Fig. 7),
we found left-lateral results in all the language tasks across the
three subgroups (see Supplementary Table 4) except for node LI
for form language attribute in trauma subgroup (node LI: 0.33–
1; edge LI: 0.25–1; nodal degree LI: 0.33–1; node LI in trauma
subgroup: 0.19). These results were consistent with the language
subnetworks for 99 patient group, which indicated that different
etiology could not affect the lateralizaition pattern in language
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Fig. 7. Language optimal subnetworks for different lesion subgroups. CUN = cuneus; IPL = inferior parietal but not supramarginal and angular gyrus;
PCUN = precuneus; PreCG = precentral gyrus; SPG = superior parietal gyrus; TPOmid = temporal lobe: middle temporal gyrus. The complete names of the
other abbreviations are provided in previous figures. The correlation R value was in Table 2 and the LI values were in Supplementary Table 4.

processing. In nonlanguage subnetworks, the lateralization pat-
terns were also similar to the whole group, while the nonlanguage
subnetworks of trauma subgroup were more left-lateral (see
Supplementary Table 4).

Discussion
Employing the NLSM method in 99 patients with brain injuries,
we explored the lateralization pattern of the white matter
subnetwork supporting six attributes (form, color, motion,
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sound, manipulation, and function) in language processes
for the whole group and different subgroups to investigate
the neurocomputational model (Chang and Lambon Ralph
2020). Our findings revealed a consistent left-lateral pattern
across all subnetworks involved in language processing within
the whole patient group. In contrast, nonlanguage processing
exhibited different lateralization patterns: the subnetwork of
form attribute was right-lateralized, those of motion and sound
attributes were bilateral, and those of color, manipulation, and
function attributes were left-lateralized. Validation analysis
confirmed that these results had no task difference, random
chance, overfitting, or method problems. Regarding the language
subnetworks in different lesion subgroups, the results showed
that lesions in one hemisphere could be compensated by
another hemisphere, while the bi-lesion subgroup showed the left
hemisphere language dominance. In different etiology subgroups,
the lateralization pattern was consistent with that in the whole
99 patient group. These results suggested that the patterns of
lesion subgroups were specific to hemispheres and matched the
neurocomputational model (Chang and Lambon Ralph 2020).

Lateralization pattern for language and
nonlanguage processing
We observed that language function in the patient group exhib-
ited a strong left-lateralization pattern across many attributes,
which aligns with previous researches and the neurocomputa-
tional model (Chang and Lambon Ralph 2020). Since Broca (1861)
discovered that damage to the left hemisphere resulted in lan-
guage deficits, the lateralization of language function has been
broadly investigated. Some studies have supported that language
processing was left-lateralized and nonlanguage processing was
right-lateralized or bilateral (Thierry et al. 2003; Thierry and Price
2006; Dick et al. 2007; Butler et al. 2009; Gainotti 2015). How-
ever, other studies have highlighted the importance of the right
hemisphere in language function (Lindell 2006; Hartwigsen and
Siebner 2012). A series of recent studies also discovered that
specific attributes could modulate language processing in both
hemispheres in healthy individuals (Fernandino, Binder, et al.
2016; Fernandino, Humphries, et al. 2016; Popp et al. 2019; Kuhnke
et al. 2020). In our study of brain-damaged patients, we found that,
across these attributes, the language subnetworks consistently
exhibited a left-lateralized pattern.

We did not find a distinct bilateral or right-lateral effect for any
attribute in language processing, suggesting that language pro-
cessing relied more on the left hemisphere than the right hemi-
sphere in brain-damaged individuals. However, it is important to
note that language processing is not entirely left-lateralized in
healthy and even in patient individuals, and the right hemisphere
might play a role (Lambon Ralph et al. 2017). In our study, the
form, color, and manipulation attributes displayed clearly left-
lateralized networks, but in other attributes (motion, sound, and
function), some right nodes were involved in patients. This sug-
gested that the right hemisphere contributed to the language
processing of these attributes in brain-damaged individuals. Early
studies, which focused on language processing, highlighted the
role of left regions, such as the left anterior temporal lobe (ATL),
in storing different types of language information, independent
of the input (e.g. words or sounds), output (e.g. speaking or draw-
ing), or the type of language context (e.g. living things, man-
made objects, and abstract ideas) (Patterson et al. 2007; Gainotti
2015). Recent research suggested that the right ATL might also be
involved in language processing although the dominance of the
left hemisphere was maintained (Lambon Ralph et al. 2017).

Unlike language processing, nonlanguage functions have pre-
viously shown bilateral or right-lateralized patterns (Thierry and
Price 2006; Gainotti 2015; Sun et al. 2017). Three different lateral-
ization patterns were demonstrated in our results: the network
for the form attribute was right-lateralized, the networks for
motion and sound attributes were bilateral, and the networks for
color, manipulation, and function attributes were left-lateralized.
Previous research discovered that both hemispheres were acti-
vated in subnetworks representing the nonlanguage processing
of form, color, motion, and sound (Miceli et al. 2001; Thierry and
Price 2006; Vinberg and Grill-Spector 2008; Stasenko et al. 2014).
These lateralization patterns are mostly consistent with existing
literature and enhance the reliability of our language subnetwork
results. Regarding the form attribute, previous studies indicated
that patients with bilateral brain damage experienced visual form
agnosia, leading to an inability to recognize object forms (Karnath
et al. 2009; Bridge et al. 2013). However, our study found right-
lateralized white matter network involved in nonlanguage pro-
cessing form attribute. This difference may be because the visual
form agnosia, typically resulting from carbon monoxide poison-
ing, often leads to a widespread loss of neurons diffusely across
the whole brain (Karnath et al. 2009). In this case, the asymmetry
of the form attribute network needs to be further elucidated. For
the color attribute, a study found that patients with color agnosia
struggled to match objects with their typical colors and had
lesions in the left ventral cortical visual stream (Siuda-Krzywicka
and Bartolomeo 2020). Another study found that color might be
a more abstract attribute and is related to language processing
because it requires individuals to ignore differences between
objects, such as their form and function (Siuda-Krzywicka et al.
2020). For the manipulation and function attributes, both healthy
and brain-damaged individuals exhibit a left-dominant pattern
(Buxbaum and Saffran 2002; Boronat et al. 2005; Lesourd et al.
2021). This could be attributed to the left-lateralized processing
of tool use (Peeters et al. 2009; Vingerhoets et al. 2011), where
using a tool necessitates forming and translating an internal
representation of the required information to perform associated
actions (Lesourd et al. 2021).

To avoid the potential influence of differences between lan-
guage and nonlanguage brain areas on our results, we compared
nonoverlapping language and nonlanguage regions within our
findings and showed no significance (see Supplementary Table 7).
Furthermore, we conducted a comparative analysis using the
results of a prior meta-analysis (Binder et al. 2009). Specifically, we
evaluated the contrast between left language and nonlanguage
brain regions and assessed the damage to left language brain
regions compared to right homotopic brain regions in meta-
analysis results (see Supplementary Table 8). Meta-analysis
results suggested that the extent of damage to language and
nonlanguage brain regions was similar and had no significance.
For homotopic region pairs in both hemispheres of the meta-
analysis, the left brain region might be lesion more than the right.

Multiple common regions in language and
nonlanguage subnetworks
We examined the co-occurrence of nodes within subnetworks in
both the whole patient group and the right-handed group (see
Supplementary Tables 9 and 10). For language tasks, the left
olfactory cortex and the left globe pallidum that occurred in five
language tasks might be multiattribute regions that process infor-
mation of multiple language attributes. For nonlanguage tasks, we
found the left thalamus and the left supplementary motor area
(SMA) in four tasks.
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Our language findings imply that the olfactory cortex–limbic
system–basal ganglia circuit may play a vital role in language
processing. The limbic system comprises (i) the cingulate and
hippocampal gyrus, (ii) the surrounding olfactory fibers, and
(iii) the hypothalamus and amygdala (Isaacson 1982); the basal
ganglia include the caudate nucleus, putamen, pallidum, and
other subregions (Graybiel 2000), and these three areas in this
circuit are closely related to each other (Hikosaka et al. 2008;
Isaacson 1982; Tanik et al. 2016). In language function, the limbic
system was thought to be involved in first and second language
acquisition (Maftoon et al. 2014), and the basal ganglia was
thought to be involved in spoken and sign language, syntax,
and language dysfunction (Crosson 1985; Graybiel 2000; Newman
et al. 2010; Zenon and Olivier 2014; Nadeau 2021). These regions,
both having nonlanguage (such as the motor control and sensory
information transfer) and language function, were mentioned to
be the neuronal recycling hypothesis (Dehaene and Cohen 2007).
Therefore, we thought that the olfactory cortex, which had a
close connection with the limbic system and the basal ganglia,
might have evolved the language function over the nonlanguage
function.

Several studies have discovered activation of the olfactory
cortex in response to words and sentences containing olfactory
information (González et al. 2006; Pomp et al. 2018). For example,
reading odor-related words activated the olfactory brain region
compared with neutral words, and metaphorical and literal
olfactory sentences recruited the secondary olfactory cortex
compared with nonsmell sentences (González et al. 2006; Pomp
et al. 2018). However, these results were compared by smelly and
other words/sentences. They did not compare words to the chess-
board, nonword string, or other low-cognitive baseline stimuli in
the olfactory cortex. We hypothesized that the olfactory cortex
might be more strongly activated by words (activation more in
smelly words than other words) than the chessboard or nonword
string. Our common language results for the olfactory cortex
might have two explanations. First, our language processing tasks
might engage olfactory information in these words and sentences,
implying that the olfactory cortex processes both explicit and
implicit olfactory information. For example, the smell of “rose”
was explicit (the perfume) and that of “tiger” was implicit (the
furry). Second, it is possible that the olfactory cortex serves
a broader role beyond olfactory processing and may function
as an information transfer hub, even for multiple nonlanguage
attributes, as we observed nonlanguage effects in three attributes.

The lenticular nucleus pallidum, a part of basal ganglia which
was also named the globus pallidus, might be a specific node
in language processing rather than nonlanguage in our results.
Previous studies mentioned that the basal ganglia had a con-
tribution not only to motor functions but also to language pro-
cessing (Crosson 1985; Liu et al. 2010; Zenon and Olivier 2014).
Specifically, the globus pallidus contributed to reading ability, the
second language, and its lesion might lead to language disorder
in Parkinson’s and Huntington’s disease (Crosson 1985; Chenery
et al. 2002; Liu et al. 2010; Kujala et al. 2021). Our findings
indicated that the globus pallidus was involved in processing
multiple language attribute information, with no observed effects
in nonlanguage processing. Therefore, it might function as a
comprehensive hub-like region that processed various aspects
of language components, including syntactic encoding, semantic
access, and attribute information management, rather than being
specific to object recognition and selection.

The thalamus, typically considered a relay center for trans-
ferring sensory and motor information between subcortical or

cortical sources and the cortex (Herrero et al. 2002; Sherman
2007), has been identified as important in language processing
in previous studies (Wahl et al. 2008;Crosson 2013 ; Llano 2013).
However, our results did not reveal a specific language effect in
the thalamus. This discrepancy could be due to several reasons:
(i) the thalamic lesion was a rapid recovery course from language
deficits, while our patients suffered from a first-time brain injury
at least 1 month postonset (this reason can be explored in some
regions that we did not found in language processing); (ii) the
thalamus might be more specific to naming, a more lexical-level
language processing, which could not be completely explored in
our comprehensive language tasks (Crosson 2013; Llano 2013).

The SMA, a part of the supplementary motor complex, con-
tributed to self-initiated and externally triggered movements,
movement sequences, behavior planning and execution, learning,
and cognitive control (Alario et al. 2006; Nachev et al. 2008). In
language function, the SMA was mentioned to play a role in word
production (Alario et al. 2006). We found the SMA effect in four
nonlanguage attributes and two language attributes (motion and
sound), which meant that this region had both language and
nonlanguage functions.

In our language and nonlanguage processing, we did not
observe a multiattribute effect in the ATL region. Several potential
reasons could explain this: (i) the lesions in patients were slightly
in the temporal lobe (see Fig. 2); (ii) the ATL region might serve as
a higher level region that our specific attribute tasks could not
effectively measure; and (iii) low-level lesions could cut off the
connections between ATL and other regions.

The investigate for previous neurocomputational
model
The results of the 99-patient group strongly supported that
language processing was left-lateral in the brain. For hemispheric-
injury subgroups, patients with bilateral lesions exhibited left-
lateralized subnetworks across all six attributes (LIs: 0.78–1);
patients with left hemisphere lesions demonstrated bilateral or
right-lateralized subnetworks (LIs in all 6 attributes except for
color: −0.66–0), while patients with right hemisphere lesions
displayed bilateral or left-lateralized subnetworks (LIs in all
6 except for sound: 0–1). Our results strongly support the
predictions of this neurocomputational model (Chang and
Lambon Ralph 2020).

These results might indicate that different hemispheric dam-
age could affect language lateralization. In cases where the right
hemisphere was severely damaged, the left hemisphere might
compensate to restore the lost language function. In situations
of severe damage in the left hemisphere, the right hemisphere
may not possess sufficient capacity to fully restore the lost lan-
guage function (Chang and Lambon Ralph 2020). We additionally
observed that when both hemispheres were damaged, the left
hemisphere was more severely impaired in language computa-
tional capacity than the right hemisphere, and the subnetwork
preferentially included the left brain regions in the language
network. In the hemispheric injury subgroups, the left damage
subnetwork contained more nodes than the right damage subnet-
work, suggesting a relatively weaker language processing capacity
in the right hemisphere. When the right hemisphere was dam-
aged, only a small amount of regions in the left hemisphere was
needed for language recovery. However, when the left hemisphere
was damaged, more regions were needed to restore the language
function. When both hemispheres were damaged, the language
network results were left-lateral because the left hemisphere
was more important and had more computational capacity than
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the right in language function. When the three groups were
grouped, the language contribution of the right hemisphere might
be hidden under the left regions of the brain because the right
hemisphere had less language processing capacity (Chang and
Lambon Ralph 2020).

Limitations
This study has at least the following limitations. (i) The global effi-
ciency of these optimal subnetworks in attributes only accounted
for a part of the variation in behavioral performance (R2 range:
24%–46%). Specifically, the reasons might be: (a) damage to gray
matter, which was not taken into account in our study (Bendfeldt
et al. 2009); (b) recovery compensation from the acute period to
the stable period (Llano 2013; Chang and Lambon Ralph 2020); (c)
segmentation of node brain regions in the AAL template in which
the AAL regions may have different functional subregions (Li et al.
2013; Xu et al. 2015), and these were not considered in our anal-
ysis; (d) the global efficiency measure which may not be highly
sensitive enough to accurately assess the processing ability of
the subnetworks under investigation; (e) the approximation of GA
in the NLSM procedure where the algorithm only approximately
but not exhaustively search all the candidate subnetworks; and
(f) practice effect and fatigue effect of the subjects (Forbach
et al. 1974). Lasty, there could be other factors stemming from
the subjects themselves (e.g. low vision), the examiners (e.g.
expectation effect), the testing environment (e.g. noise), and the
testing machine (e.g. stimuli clearness). (ii) Some brain regions did
not appear in the identified subnetworks because they had fewer
patients with lesions (e.g. left and right SPG, PCG, ORPsupmed, see
Supplementary Table 3). (iii) The item numbers of some attribute
tasks were different, which might have confounded the differ-
ences among the attribute networks. (iv) Due to methodological
limitations, we adopted GA to reduce the computational load.
The obtained optimal subnetworks might not be truly optimal.
(v) Some obtained attribute networks also had few nodes and
edges with LIs that might not be sensitive. (vi) Our study did not
examine the lateralization of the language network in all non–
right-handed patients. These issues need to be explored in future
studies.

Conclusion
Using the NLSM method and 99 patients with brain injuries, we
constructed networks underlying the six attributes in language
processes for the whole group and different subgroups to inves-
tigate the neurocomputational model (Chang and Lambon Ralph
2020). We found that networks for language processing for all six
attributes were left-lateralized, while nonlanguage networks had
different lateralization patterns. Regarding the language subnet-
works in different lesion subgroups, lesions in one hemisphere
could be compensated by another hemisphere, while the bi-lesion
subgroup showed the left hemisphere language dominance. These
findings reveal the importance and necessity of the left hemi-
sphere in various language processes and support the unified
and comprehensive neurocomputational model in healthy and
patient individuals.
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