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A B S T R A C T   

The human ventral occipito-temporal cortex (VOTC) has evolved into specialized regions that process specific 
categories, such as words, tools, and animals. The formation of these areas is driven by bottom-up visual and top- 
down nonvisual experiences. However, the specific mechanisms through which top-down nonvisual experiences 
modulate category-specific regions in the VOTC are still unknown. To address this question, we conducted a 
study in which participants were trained for approximately 13 h to associate three sets of novel meaningless 
figures with different top-down nonvisual features: the wordlike category with word features, the non-wordlike 
category with nonword features, and the visual familiarity condition with no nonvisual features. Pre- and post- 
training functional MRI (fMRI) experiments were used to measure brain activity during stimulus presentation. 
Our results revealed that training induced a categorical preference for the two training categories within the 
VOTC. Moreover, the locations of two training category-specific regions exhibited a notable overlap. Remark
ably, within the overlapping category-specific region, training resulted in a dissociation in activation intensity 
and pattern between the two training categories. These findings provide important insights into how different 
nonvisual categorical information is encoded in the human VOTC.   

1. Introduction 

Rapid and precise categorization of a visual stimulus is usually 
crucial for the survival and reproduction of animals (Thorpe et al., 
1996). Evidence has shown that the ventral occipitotemporal cortex 
(VOTC), an important area for processing visual stimuli in humans and 
primates, can efficiently discriminate stimuli from different categories 
(e.g., tools, animals, faces, and words; Mahon and Caramazza, 2009; 
Grill-Spector and Weiner, 2014; Bi et al., 2016). A hot and important 
scientific question is how the VOTC achieves this functionality. 

Previous studies have indicated that the formation of these regions is 
driven not only by bottom-up visual modalities (Hasson et al., 2002; 
Nasr et al., 2014; Srihasam et al., 2014; Arcaro et al., 2017) but also by 
top-down nonvisual sensory and motor modalities (Price and Devlin, 
2011; van den Hurk et al., 2017; Taylor et al., 2019). For example, 
braille reading in congenitally blind individuals activates the visual 

word form area (VWFA) (Reich et al., 2011; Kim et al., 2017; Mattioni 
et al., 2020). Furthermore, evidence suggests that these regions are 
modulated by top-down information from other high-level regions 
(Chen et al., 2019; Li et al., 2020; Liu et al., 2021). This modulation 
occurs through connectivity between category-specific regions in the 
VOTC and high-level regions, known as the connectivity hypothesis 
(Mahon and Caramazza, 2011; Hannagan et al., 2015; Li et al., 2018; Op 
de Beeck et al., 2019). Crucially, the structure of this connectivity 
network is innate and present from birth (Saygin et al., 2011; Osher 
et al., 2016; Saygin et al., 2016; Mars et al., 2018). However, this 
network does not manifest unless top-down information is learned (Li 
et al., 2020). For instance, word-specific areas in the VOTC do not 
emerge in humans without literacy (Dehaene et al., 2010; Dehaene et al., 
2015; Dehaene-Lambertz et al., 2018). In essence, category-specific re
gions in the VOTC are innate at birth, but their initiation is influenced by 
postbirth learning experiences (Bracci and Op de Beeck, 2016; Op de 

* Corresponding author at: State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 
Beijing 100875, PR China. 

E-mail address: zzhhan@bnu.edu.cn (Z. Han).   
1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/ynimg 

https://doi.org/10.1016/j.neuroimage.2024.120520 
Received 3 August 2023; Received in revised form 7 January 2024; Accepted 17 January 2024   

mailto:zzhhan@bnu.edu.cn
www.sciencedirect.com/science/journal/10538119
https://www.elsevier.com/locate/ynimg
https://doi.org/10.1016/j.neuroimage.2024.120520
https://doi.org/10.1016/j.neuroimage.2024.120520
https://doi.org/10.1016/j.neuroimage.2024.120520
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


NeuroImage 287 (2024) 120520

2

Beeck et al., 2019). 
However, the precise manner in which learning experiences from 

top-down processing modulate category-specific regions in the VOTC 
has not been determined. Two hypotheses have been proposed. The first 
hypothesis suggests that different top-down nonvisual features were 
processed by neurons from distinct locations, which means stimuli with 
different nonvisual features will activate different areas in VOTC even 
when the visual features are controlled (Rauschecker et al., 2011; Say
gin et al., 2011; Ekstrand et al., 2020). The second hypothesis proposes 
that the location of training-related areas will be formed mainly by vi
sual features (Hasson et al., 2002; Malach et al., 2002; Nasr et al., 2014; 
Srihasam et al., 2014). Therefore, stimuli with different nonvisual but 

controlled visual features may be represented in the same area in VOTC. 
Additionally, for the second hypothesis, different nonvisual features 
may be more likely to influence this category-specific region on VOTC by 
modulating brain activation in different ways (e.g., the whole activation 
intensity and the pattern of activity across multiple voxels; Ishai et al., 
1999; Haxby et al., 2001; Song et al., 2012; Carreiras et al., 2014; 
Coggan et al., 2016). The most significant difference between these two 
hypotheses lies in whether the activated areas of different category 
stimuli with the controlled visual features are situated in the same or 
different locations on the cortex after training. To our knowledge, no 
studies have directly differentiated between these two possibilities. 

To explore this question, we employed meaningless novel figures 

Fig. 1. Experimental stimuli and paradigm. The examples of stimuli highlighted in the red boxes in Figure B are those shown in Figure A. The evaluation scores in 
Figure B are shown as the mean values and standard error of the mean (SEM). The full names of the tasks in Figure D are provided in Figure C. The learning tasks in 
Figures C and D are underlined to distinguish them from the testing tasks. 
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with varied nonvisual and controlled visual features as different cate
gories and tested whether learning these different nonvisual features 
could induce distinctive locations or regulate the activation intensities 
and patterns in the same region of VOTC. Nineteen healthy participants 
participated in approximately 13 training sessions, associating three 
visually homogeneous sets of novel meaningless figures (each set 
comprising 20 figures) with different nonvisual features, namely, pro
nunciation and grammatical class for the wordlike condition, manipu
lation and function for the non-wordlike condition, and no nonvisual 
features for the visual familiarity condition which served as the baseline. 
Subjects performed a one-back task for all stimuli in the pre- and post- 
training MRI scan sessions. The post-training scans also included a 
categorization task, requiring subjects to identify the training condition 
to which the stimuli belonged. Compared to the one-back task, this task 
requires deeper processing from the subjects. The fMRI data were 
analyzed to examine whether potential categorical differences (wordlike 
and non-wordlike) existed in the activation location, intensity, and 
pattern in the VOTC. 

2. Materials and methods 

2.1. Participants 

Forty-nine healthy college students were recruited for this study. All 
the participants were right-handed native Mandarin Chinese speakers 
with normal or corrected-to-normal vision. Nineteen of them [age: 20.05 
(mean) ± 0.27 (standard error of the mean, SEM) years old; 10 females] 
participated in the training and fMRI experiments. The remaining 30 
subjects completed experiments to assess the meaninglessness and cat
egorical bias of the novel figures. This study was approved by the 
Institutional Review Board of the National Key Laboratory of Cognitive 
Neuroscience and Learning, Beijing Normal University. Written 
informed consent was obtained from all participants before the 
experiments. 

2.2. Stimuli 

A total of 60 novel figures (450 * 450 pixels) were created with 
simple lines and arcs (Fig. 1A), which was similar to what was done in 
our recent study (Li et al., 2020). The stimuli were generated collabo
ratively by two Ph.D. students, each of whom was responsible for 
creating 30 stimuli. The instructions for this generation process were as 
follows: “Please utilize Photoshop software to craft a series of mean
ingless stimuli, each composed of 2–5 basic geometric shapes (e.g., lines, 
triangles, diamonds, ovals, etc.). These fundamental geometric shapes 
can be superimposed to create irregular geometries. It is crucial to 
ensure that the combinations of geometric shapes used in crafting these 
stimuli are as random as possible and should not resemble or be modeled 
after any real objects. 

To ensure the meaninglessness and absence of association with real- 
world objects (e.g., words and tools) in our novel figures, we measured 
both the objective low-level visual dissimilarity and subjective func
tional dissimilarity compared to real-world objects. Using ShapeComp, a 
low-level vision model (Morgenstern et al., 2021), we assessed visual 
dissimilarity. The results showed that the novel stimuli were visually 
similar to each other, and the real-world object stimuli also exhibited 
visual similarity within their group, but the novel stimuli were visually 
dissimilar to the real-world object stimuli (see Supplementary Fig. 1). To 
measure functional dissimilarity, we instructed 30 healthy subjects to 
evaluate their meaninglessness and categorical dissimilarity. The eval
uation was conducted using a 7-point grading scale (1 = very similar, 4 
= medium, 7 = very dissimilar) and involved answering three questions: 
how unlikely was the figure to be (1) a meaningful object, (2) a real 
word, or (3) a real tool? To compare the evaluation scores of the novel 
figures with those of standard stimuli for each question, we added three 
other assessment materials: 10 real objects, 20 real Chinese words, and 

20 real tools. Moreover, to avoid bias in the responses to the above 
stimuli, we added 40 filler stimuli (10 polygons, 10 pseudo-Chinese 
words, 10 Korean words, and 10 meaningless symbols) (Fig. 1B). All 
150 stimuli were presented in a pseudorandom manner during the 
assessment. The evaluation scores for the meaninglessness question for 
the 60 novel figures (5.74 ± 0.13) were close to those for the mean
ingless symbols (5.76 ± 0.17; t29 = –0.17, p = 0.87) but were signifi
cantly greater than those for the other six types of stimuli (score range: 
1.42 to 4.35; ps < 0.001). Moreover, the scores for the word-likelihood 
questions of the novel figures (6.20 ± 0.20) were close to those of 
meaningless symbols (5.95 ± 0.23; t29 = 1.65, p = 0.11), real objects 
(5.92 ± 0.32; t29 = 1.15, p = 0.26), and real tools (5.89 ± 0.32; t29 =

1.23, p = 0.23) but were significantly greater than those of the other four 
types of stimuli (score range: 1.19 to 4.56; ps < 0.001). Similarly, the 
scores for the tool-likelihood questions of the novel figures (5.93 ± 0.14) 
were close to those of meaningless symbols (5.82 ± 0.17; t29 = 0.87, p =
0.39), Chinese words (5.98 ± 0.24; t29 = –0.19, p = 0.85), and Korean 
words (6.21 ± 0.17; t29 = –1.39, p = 0.18) and were significantly lower 
than those of the pseudo-Chinese words (6.43 ± 0.15; t29 = –2.48, p =
0.02). However, these values were significantly greater than those for 
the other three types of stimuli (score range: 1.29 to 4.67; ps < 0.001) 
(Fig. 1B). All the results above indicate that the novel figures were 
visually and functionally meaningless and sufficiently dissimilar to real 
words or tools before training. 

2.3. Behavioral training procedure 

We designed three training conditions with varying nonvisual fea
tures and controlled visual features: wordlike, non-wordlike, and visual 
familiarity conditions. First, each figure in the wordlike condition was 
associated with two kinds of word features (i.e., pronunciation and 
grammatical class). It is particularly important to emphasize that the 
wordlike condition is only partially but not entirely related to real words 
because of its relatively low ecological validity. Therefore, we use the 
term "wordlike" stimuli to distinguish them from words acquired in real 
natural situations. Second, to differentiate from the wordlike condition, 
we chose two nonword features, namely, manipulation and function, for 
the non-wordlike condition. This selection was influenced by the pro
totype of the tools, with the aim of establishing associations between 
meaningless shapes and operational characteristics such as manipula
tion and resulting functions. Consequently, many subsequent training 
tasks were centered around tools. However, the lack of actual manipu
lation in these tasks poses a challenge in forming a genuine tool-related 
representation. Nonetheless, we believe that this condition is distinct 
from the wordlike condition and can be characterized as non-wordlike. 
Third, to obtain the training-related category-specific location, we 
designated a visual familiarity condition as a baseline (which was sub
sequently described as the baseline condition for simplicity) for which a 
procedure similar to that of the wordlike or non-wordlike condition was 
used, except that the stimuli were not learned with specific features 
(Fig. 1C). 

The 60 novel stimuli were randomly divided into three fixed sets, 
each containing 20 figures. The assignment of stimuli sets to training 
conditions followed a Latin-counterbalanced design across subjects. 
Specifically, seven subjects considered the first stimulus set as the 
wordlike condition, the second as the non-wordlike condition, and the 
third as the baseline condition. The other six subjects regarded the 
second set as the wordlike condition, the third as the non-wordlike 
condition, and the first as the baseline condition. Additionally, 
another six subjects were trained to associate the third set with the 
wordlike condition, the first with the non-wordlike condition, and the 
second with the baseline condition. By employing meaningless novel 
stimuli and implementing a counterbalanced design, the study ensured 
stimulus homogeneity across the different training conditions. Each 
subject was presented with all the stimuli during the behavioral training 
and fMRI experiments. The detailed design and procedure are explained 
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as follows. 
Learning and testing tasks of wordlike and non-wordlike condi

tions. When a subject learned the wordlike identity of a figure, the figure 
was specifically associated with a parameter feature space of two lin
guistic features: one of 20 pronunciations (e.g.,/tunu/,/dufi/,/tepi/) and 
one of four grammatical classes (i.e., adjective, adverb, preposition, 
auxiliary). To avoid pronunciations that were close to those of real 
Chinese words, we created these pronunciations by combining 10 con
sonants and 5 vowels of Esperanto to generate bisyllabic pseudowords 
using “espeakers” speech synthesizer software (http://espeak.sourcef 
orge.net/). Similarly, when the nonword identity of a figure was 
known, the figure was specifically associated with another parameter 
feature space of two nonlinguistic features: one of 20 functional prop
erties (e.g., burrow, sow, irrigate) and one of 20 ordered manipulations 
in which each consisted of two main correlated actions (e.g., press and 
push, pull out and shake, beat and stir). There were 16 actions in total. 
Each action was drawn on a card that showed a clear diagram of how the 
action was performed. These 16 action cards were used in the testing 
tasks. 

To train subjects to learn how to categorize figures as wordlike or 
non-wordlike, we used two feature learning tasks (i.e., association and 
matching). In feature association learning (FAL), subjects were instructed 
to respond to each figure with its two corresponding features as accu
rately as possible. Each figure was visually presented on the screen. For 
the wordlike identity, the written name of the grammatical category (i. 
e., adjective) was visually presented, and the auditory pronunciation 
was presented when the subject clicked a trumpet logo on the screen. For 
the non-wordlike identity, we visually presented the written names of 
the functional properties (e.g., sow) and two manipulation actions (e.g., 
pull out and shake). To help subjects better understand the features of 
manipulation actions, we additionally presented a written description of 
the manipulation process (e.g., pulling out the switch of the stimulus 
when the seeds are placed on the bottom of the stimulus and then 
shaking the stimulus clockwise so that the seeds can fall evenly) on the 
screen. The feature matching learning (FML) task involved the presenta
tion of a figure with two feature options. Subjects were required to judge 
which feature matched the figure based on the above association task, 
and there was no time limit for the subjects’ responses. The correct 
answer was provided as feedback following the subject’s response. 

We developed the following six testing tasks to evaluate the training 
effects comprehensively. 1) The visual feature matching testing (vFMT) 
task was identical to the FML task, except no feedback providing the 
correct answer was given. 2) The written feature generation testing (wFGT) 
task requires the subject to write down two learned features for each 
visually presented figure. The pronunciation of each wordlike stimulus 
was written in pinyin form. The above two testing tasks were applied to 
both wordlike and non-wordlike conditions. We also developed two 
additional tasks for each wordlike and non-wordlike condition. 3) In 
written feature dictation testing (wFDT) for the wordlike condition, sub
jects were instructed to write/draw figures when listening to their 
pronunciation feature via earphones. 4) In oral feature generation testing 
(oFGT) for the wordlike condition, subjects were instructed to verbally 
report the pronunciation and grammatical class for each visually pre
sented figure. 5) Manipulation feature matching testing (mFMT) for the 
non-wordlike condition required the subjects to select two action cards 
(e.g., pull out, shake) from the 16 action cards that had manipulation 
actions corresponding to the visually presented figure. 6) In function 
feature matching testing (fFMT) for the non-wordlike condition, we asked 
subjects to select the figure whose function was most appropriate for a 
given situational prompt (e.g., Which figure can help you sprinkle the 
seeds evenly when you plant the tulips in the yard?). There were no time 
limits for the response in any of the testing tasks. 

Learning and testing tasks of the visual familiarity (baseline) con
dition. The training task was shape matching learning (SML). A target 
figure was first presented on the screen for a short time (i.e., a duration 
ranging from 66.8 ms to 167 ms), after which nine candidate figures 

were visually presented. The subjects were required to select the target 
figure among the candidates. The correct answer was provided 
following each response of the subjects. The visual shape matching test 
(vSMT) was used for testing. The vSMT was identical to the learning task, 
except no feedback was provided for the correct answer. There were no 
time limits for the response in any of the testing tasks. 

Training procedure. Each subject was trained in four successive 
stages (Fig. 1D). All the stages involved completed the same training 
tasks. The visual familiarity testing task was the same during all stages, 
but the wordlike and non-wordlike testing tasks varied across stages. 
Generally, the difficulty of the testing tasks for wordlike and non- 
wordlike conditions increased as the stages progressed. Each stage 
involved 2–5 training sessions lasting approximately 1 h per day. On the 
first day of each training stage, the subjects completed all the learning 
tasks and subsequently completed specific testing tasks. The learning 
tasks lasted 40–50 min, followed by a period of testing tasks lasting 
approximately 10–20 min. During the learning task portion of the ses
sion, the subjects spent time on each of the two learning tasks according 
to their preferences. During the testing portion of the session, more 
challenging tasks were presented and completed first, followed by easier 
tasks. No time limit was given for the response to the training tasks, and 
subjects were encouraged to perform the tasks as precisely as possible. 
When a subject had more than 80 % accuracy in each testing task on a 
day, he or she progressed to the next stage of training. Each subject 
completed 12.74 training sessions on average (SEM = 0.59 sessions, 
range: 9 to 18 sessions). To examine whether the participants had ac
quired the different categories of all the figures, we designed and 
implemented a final testing session in which each subject completed all 
the testing tasks the day before the post-training MRI scan. 

2.4. Neuroimaging data acquisition 

The 19 individuals who participated in the behavioral training un
derwent fMRI scanning twice (i.e., before and after training) using a 3T 
Siemens Magnetom Prisma scanner with a standard 64-channel phased- 
array head coil at Beijing Normal University. We collected four types of 
images: task-state fMRI images, 3D T1-weighted images, diffusion- 
weighted images (DWI), and resting-state images. Task-state fMRI im
ages were acquired for two tasks (i.e., the one-back and categorization 
tasks) with the 60 novel figures. These tasks involved varying levels of 
information processing depth for the figures. The one-back task could be 
completed based on the shape information of the figures regardless of 
whether the categories of these figures were learned. In contrast, the 
categorization task was completed based on learned category informa
tion after training. As a result, fMRI images for the one-back task were 
collected at each scanning session, with the categorization task images 
exclusively obtained during the post-training scans. The T1-weighted 
images were gathered in pre- and post-training sessions, and DWI im
ages and resting-state were collected before the training. 

MRI acquisition parameters. Structural 3D images in the sagittal 
plane were obtained with the following parameters: repetition time 
(TR) = 2530 ms, echo time (TE) = 2.27 ms, flip angle (FA) = 7◦, field of 
view (FOV) = 256 × 256 mm2, slice number = 208, slice thickness = 1.0 
mm, and voxel size = 1.0 × 1.0 × 1.0 mm3. The task fMRI data were 
collected in the transverse plane with a T2*-weighted echo-planar im
aging (EPI) sequence with the following parameters: TR = 2000 ms, TE 
= 34 ms, FA = 90◦, FOV = 200 × 200 mm2, slice number = 72, slice 
thickness = 2 mm, and voxel size = 2.0 × 2.0 × 2.0 mm3. DWI was 
acquired in the transverse plane with the following parameters: TR =
3900 ms, TE = 65 ms, FA = 90◦, FOV = 256 × 256 mm2, slice thickness 
= 2.0 mm, and voxel size = 2.0 × 2.0 × 2.0 mm3. There were a total of 
64 diffusion weighting directions with a b value of 2000 s/mm2 and 10 
b0 images. The resting-state images were acquired in the transverse 
plane with the following parameters: TR = 1000 ms, TE = 30 ms, FA =
70◦, FOV = 192 × 192 mm2, slice thickness = 3.0 mm, and voxel size =
3.0 × 3.0 × 3.0 mm3. DWI and resting-state data were not further 
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analyzed in the current study. 
One-back fMRI task. This task was a one-back repetition detection 

task with a block design. In addition to the three training conditions 
(wordlike, non-wordlike, and baseline), we added two real, meaningful 
conditions (20 real words, 20 real tools) to avoid response bias in the 
subjects. Each condition contained 20 black and white line figures. The 
whole experiment contained four runs, each consisting of 20 blocks (i.e., 
four blocks per condition). Blocks in a run were presented in a pseu
dorandom order and were separated by a 6 s fixation window. Each 
block included 8 stimuli from the same condition, and each stimulus was 
visually presented at 800 ms, followed by a blank screen for 1200 ms. 
Each run began with a 10 s fixation and ended with a 2 s fixation to 
stabilize the signal. The subjects were instructed to respond by pressing 
a button with their right index finger whenever the presented stimulus 
matched the preceding one. 

Categorization fMRI task. This task was a categorization task using 
an event-related (ER) design. It included 6 runs. The stimuli in each run 
consisted of the 60 novel figures that the subjects had learned. The 
figures were visually presented in a pseudorandom order and were the 
same across subjects. Each figure was presented for 1 s, followed by a 
random interval with a fixation duration ranging from 1 s to 9 s. Par
ticipants were instructed to identify the category (wordlike, non- 
wordlike, or baseline) to which each figure was associated. They 
responded by pressing the button corresponding to the chosen category, 
and three types of buttons were counterbalanced across subjects. The 
example of the experiment instruction was as follows: "Please determine 
the category to which the following figure belongs: if it is a word, press 
the key with the right index finger; if it is a tool, press the key with the 
right middle finger; if it does not possess any attributes, press the key 
with the right ring finger." The sequence of the three conditions in each 
run and the interval between trials were optimized using the optseq2 
algorithm (https://surfer.nmr.mgh.harvard.edu/optseq/). Each run 
began and ended with a 10 s fixation to stabilize the signal. 

The fMRI data were analyzed with SPM12 (http://www.fil.ion.ucl. 
ac.uk/spm/). The first 10 s of each run were excluded from the anal
ysis to allow for the initial stabilization of the fMRI signal. The pre
processing procedure included slice timing, motion correction, 
normalization to the Montreal Neurological Institute (MNI) space, and 
smoothing with an isotropic 6-mm full width at half-maximum (FWHM) 
Gaussian kernel. For each subject, the data were first high-pass filtered 
(the parameter was 0.0078 Hz for both categorization and one-back 
fMRI tasks) and then fitted by a general linear model (GLM) with a 
boxcar regressor with a duration matching the response time to estimate 
the effect of the experimental conditions. We excluded data from a total 
of two runs from our analysis due to excessive head motion (> 2 mm) or 
rotation (> 2◦) of the subject. Moreover, because gradient-echo se
quences could lead to signal loss in the inferior temporal cortex (Oje
mann et al., 1997), each subsequent analysis excluded voxels 
experiencing signal loss in all three conditions (wordlike, non-wordlike, 
and baseline). 

Compared to the one-back task, the categorization task in the post- 
training scan required a deeper level of learned information about the 
categories and might induce stronger category-related training effects in 
the VOTC. Therefore, the following analyses first investigated the effects 
of the categorization task and ultimately yielded regions of interest 
(ROIs) from the group-averaged activation map and peaks of interest 
(POIs) from the individual activation map. Then, the ROI and POI were 
used to investigate the effects of the one-back task at two distinct time 
points (i.e., pre- and post-training). The analyses of the post-training 
data were used to inspect whether the training effects observed in the 
categorization task were also evident in the one-back task and were 
consistent across tasks. Moreover, analyses of the pre-training data were 
used to determine the original state before training. 

2.5. Category-related activation effects in the VOTC 

To explore whether learning the features of the two categories 
(wordlike, non-wordlike) gave rise to different activation effects in the 
VOTC, we compared the location, intensity, and pattern of activation 
between the categories in the VOTC using fMRI task data. 

Activation location. Activation location refers to the location of 
significant brain clusters specific to a particular experimental condition. 
To compare the categorical differences in the location of activation in 
the VOTC, we first created a VOTC mask that included all the voxels in 
the inferior occipital gyrus, fusiform gyrus, parahippocampal gyrus, and 
inferior temporal cortex of the left hemisphere (y-axis ranging from –90 
to –30) defined by the IBASPM 116 atlas from the WFU_PickAtlas 
toolbox (Maldjian et al., 2003). We chose the left hemisphere because 
we primarily focus on the differences between word and nonword 
nonvisual features, and word-specific activation is almost strongly 
located in the left hemisphere due to language dominance (Knecht et al., 
2000; Seghier and Price, 2011). Then, we performed two complemen
tary analyses. First, a group-level analysis was performed to examine the 
degree of overlap between the locations of the wordlike- and 
non-wordlike-relevant activation clusters in the VOTC mask. The clus
ters were extracted as the fMRI signals (i.e., the parameter estimate beta 
values) from the contrast of the wordlike condition (or non-wordlike 
condition) vs. baseline condition across subjects (GRF corrected, 
voxel-level p < 0.001, cluster-level p < 0.025, one-tailed). We then 
further extracted the common region between the two categories 
(ROIcommon), i.e., the mask of the overlapping voxels between the two 
clusters. The overlapping degree was measured as the percentage of 
voxels in the ROIcommon relative to the voxel number in the smaller of 
two category-specific clusters. A second individual-level analysis was 
performed to test the degree of closeness of the activation peaks between 
the two categories in the VOTC mask. Specifically, we extracted the peak 
in the VOTC mask for each category and each subject (i.e., POI) and then 
performed a comparison across subjects of all the coordinates of the 
peaks between the two categories (related samples Wilcoxon 
signed-ranks test, p < 0.05). As we later found that the coordinates of the 
peaks between the two categories were not significant on any of the 
three axes, the common peak (i.e., POIcommon) for each subject was 
extracted as an 8 mm-radius sphere centered at the peak of the contrast 
wordlike condition + non-wordlike condition > baseline condition. Impor
tantly, ROIcommon is a group-level defined region, while POIcommon is an 
individual-level defined region. The inclusion of both definition 
methods in the present study emphasizes their complementarity rather 
than differences in obtaining significant results. 

Activation intensity. Activation intensity refers to the average beta 
values derived from the BOLD signals in the regions of interest within 
the brain. We separately conducted two analyses to compare the acti
vation intensity among the three conditions (wordlike, non-wordlike, 
baseline) in the common region (i.e., ROIcommon) and the common 
peak (i.e., POIcommon) in the VOTC obtained via the above analysis. 

Notably, in subsequent analyses, we used the same procedure for 
analyzing ROIcommon and POIcommon, except that the clusters of interest 
had different shapes and locations. For simplicity, we only introduce the 
analysis details for the ROIcommon unless otherwise noted. Furthermore, 
although the main purpose of the following analyses was to reveal the 
differences between the two categorical conditions (wordlike and non- 
wordlike), the differences between the two categorical conditions and 
the baseline condition were also investigated, as these comparisons shed 
light on the degree of change in neural signals specifically prompted by 
categorical training. 

We extracted each subject’s activation intensity (beta value) in each 
of the three conditions (each condition vs. rest) for each voxel in the 
ROIcommon. Then, the activity intensity in each condition was averaged 
across voxels for each subject. Finally, the average intensity between 
each pair of the three conditions (3 pairs: wordlike vs. non-wordlike, 
wordlike vs. baseline, and non-wordlike vs. baseline) was compared 
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across subjects using a paired sample t test (p < 0.05). 
Activation pattern. The activation pattern denotes the patterns of 

neural activity across multiple voxels within the regions of interest in the 
brain. Multivariate pattern analysis (MVPA) was adopted to compare the 
similarity of the activation patterns in the ROIcommon and POIcommon 
among the three conditions. To ensure reliable results, we adopted the 
following three MVPA subanalyses. 

Split-half correlation analysis in the ROIcommon. This analysis was 
used to examine the similarity of neural patterns in the ROIcommon be
tween the three training conditions, focusing on the stability of activa
tion patterns across runs within a condition (Haxby et al., 2001; Kang 
et al., 2021). The data were split in half (i.e., half1 and half2). The hy
pothesis was that if the activation patterns between the two conditions 
were significantly different, the activation patterns produced by the two 
data halves from the same condition (i.e., "within-condition") would 
exhibit greater stability than the activation patterns produced by half1 
from one condition and half2 from a different condition (i.e., 
"between-condition"). In other words, there was a greater correlation for 
the within-condition comparison than for the between-condition 
comparison. 

This analysis included the following main steps. 1) For each subject, 
the preprocessed normalized fMRI data in the ROIcommon were divided 
into halves. This process was repeated to form all possible unique di
visions. For example, the six runs in the categorization task were split 
into two halves (each containing three runs) and repeated to form the 
ten possible divisions (e.g., way1: runs1, 2, and 3 vs. runs 4, 5, and 6; 
way 2: runs1, 2, and 4 vs. runs 3, 5, and 6). 2) The beta value of each 
voxel in each of the three conditions was extracted for each half of the 
data for a given division. The mean beta value across all three conditions 
within the ROIcommon was subtracted from the beta value for one con
dition in each voxel to obtain a response more specific to that category 
condition. As a result, there were six category-specific beta values for 
each voxel and each subject. Each half of the data yielded three values 
corresponding to the three conditions (wordlike, non-wordlike, base
line). 3) For each pair of conditions, the category-specific beta values of 
two conditions from one-half of the data were correlated with the 
category-specific beta values of the other half across the voxels in the 
ROIcommon. This yielded four correlation coefficients: two within- 
condition coefficients (correlations between the two halves of the data 
from the same condition) and two between-condition coefficients (cor
relations between one-half of the data from one condition and the other 
half from a different condition). 4) The four coefficients were further 
Fisher z-transformed across subjects to solve the skewed distribution of 
correlation coefficients. 5) The difference (D value) between the two 
conditions was calculated by subtracting the average value of two z- 
transformed within-condition coefficients from the average value of two 
z-transformed between-condition correlation coefficients. 6) The above 
steps were completed for all possible divisions, and the D values of all 
the divisions were averaged. Finally, the average D values, after 
inserting 2.5 standard deviations (SD) as the outlier threshold, were 
statistically tested (compared with zero) across subjects (one-sample t 
test, p < 0.05) to investigate whether significant differences emerged in 
the activation patterns between each pair of conditions. To increase the 
reliability of our findings, we ran the analysis with no category-specific 
beta step (i.e., step 2) or Fisher z transfer step (i.e., step 4). 

Leave-one-out support vector machine (SVM) analysis of the 
ROIcommon. This analysis was also used to investigate the neural pattern 
similarity in the ROIcommon between the three training conditions but 
focused on the classification accuracy of activation patterns between 
conditions. This analysis was conducted with the Decoding Toolbox 
(Hebart et al., 2015) based on a library for SVM (Chang and Lin, 2011). 
The procedure included the following steps. 1) The beta values from 
unsmoothed beta maps of each voxel within the ROIcommon for each 
condition were extracted. 2) The SVM classifier was trained to establish 
a predictive model using the beta values of a pair of conditions from 5 
out of 6 runs. 3) The model’s predictive ability (correct vs. incorrect) 

was examined using the beta values of the same two conditions on the 
left-out run. This step was repeated six times, each time leaving out a 
different run (leave-one-out procedure). 4) The average classification 
accuracy was calculated across repetitions. Finally, the group-level 
decoding accuracy across subjects was assessed using a one-sample t 
test (p < 0.05) with the removal of outliers whose values exceeded 2.5 
SD. 

Leave-one-out SVM searchlight analysis across the entire VOTC. 
This analysis was used to explore whether the different activation pat
terns between the three conditions also appeared in areas of the VOTC 
other than the ROIcommon, ultimately investigating the uniqueness of the 
ROIcommon in discriminating the categorical patterns. This analysis was 
implemented in a searchlight manner for the data from the categoriza
tion task. First, for each subject, we created a 6 mm-radius sphere 
centered around every voxel throughout the VOTC in the native space. 
Second, a leave-one-out SVM analysis was performed in each sphere 
instead of in the ROIcommon, and the classification accuracy between 
each pair of conditions in each voxel of the VOTC was obtained. This 
analysis yielded a map of classification accuracy for each pair of con
ditions in the VOTC. Third, the map of each subject was spatially 
normalized to the MNI space and smoothed using a Gaussian kernel (6 
mm FWHM). Finally, we assessed the significant clusters whose classi
fication accuracy was above chance (50 %) across subjects (one-sample t 
test, GRF corrected, voxel-level p < 0.001, cluster-level p < 0.025, one- 
tailed). 

3. Results 

3.1. Behavioral performance 

The mean accuracies of 19 subjects for each testing task in the final 
test reached the ceiling for both the wordlike condition (vFMT: 0.99 ±
0.003; wFGT: 0.99 ± 0.005; wFDT: 0.96 ± 0.01; oFGT: 1.00 ± 0.003) 
and the non-wordlike condition (vFMT: 0.99 ± 0.004; wFGT: 0.99 ±
0.005; mFMT: 0.95 ± 0.02; fFMT, 0.99 ± 0.01). In addition, the par
ticipants could also effectively recognize the figures in the baseline 
condition during the visual shape matching test (vSMT) (accuracy=0.92 
± 0.02; chance level=0.10) (Fig. 2A). These results showed that the 
participants could successfully associate the novel stimuli with their 
corresponding nonvisual categorical features of words and nonwords 
and be very familiar with the visual shape of the figures in the baseline 
condition. 

To assess the potential differences in familiarity level between the 
two categorical training conditions, we conducted a comparative anal
ysis of behavioral performance across two commonly used testing tasks 
for the two categories (i.e., vFMT and wFGT) in the final training ex
amination. The results showed that the behavior performances were not 
significant between the two categories in the two testing tasks (vFMT: Z 
= –0.11, wFGT: Z = –0.58; Wilcoxon signed rank test ps > 0.05). We 
further included a categorization task during post-training fMRI scan
ning to investigate participants’ responses to the two training categories 
(Fig. 2B). No statistically significant difference was found in the inverse 
efficiency (IE) score (i.e., reaction time/accuracy) between the wordlike 
and non-wordlike stimuli (wordlike vs. non-wordlike: 996.13 ± 40.36 
vs. 981.21 ± 43.14, t15 = 1.35, p = 0.20). These results revealed that 
participant’s familiarity with the wordlike and non-wordlike conditions 
did not significantly differ. 

3.2. Category-related effects in the VOTC 

Activation location. To explore whether learning the features of 
wordlike and non-wordlike categories resulted in different category- 
specific locations within the VOTC, we conducted two complementary 
analyses. First, at the group level, we examined the degree of overlap 
between two regions of interest (ROIs) in the VOTC: the wordlike and 
non-wordlike activation clusters derived from the group-averaged 
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activation map. The wordlike cluster (wordlike condition vs. baseline 
condition) and the non-wordlike cluster (non-wordlike condition vs. 
baseline condition) contained 217 voxels and 51 voxels within the VOTC 
mask, respectively (GRF corrected, voxel-level p < 0.001; cluster-level p 
< 0.025, one-tailed). Notably, a common region of interest (i.e., ROI
common), consisting of 46 voxels, was identified. Therefore, the overlap 
between ROIcommon and non-wordlike regions was as high as 90.20 % 
(46/51) (Fig. 3A). Second, at the individual level, we extracted the 
activation peak of interest (POI) within the VOTC for both the wordlike 
(wordlike condition vs. baseline condition) and non-wordlike (non- 
wordlike condition vs. baseline condition) conditions from each subject 
and examined potential differences. The results revealed no differences 
in the coordinates of each of the three axes of the peak between the two 

categories (x-axis: –51.41 ± 1.33 vs. –49.65 ± 1.90; y-axis: –52.59 ±
1.11 vs. –50.47 ± 1.68; z-axis: –13.76 ± 1.42 vs. –14.94 ± 1.59; Wil
coxon signed-rank test, ps > 0.10) (Fig. 3B). These results indicate that 
wordlike and non-wordlike training activated highly overlapping loca
tions in the VOTC. We also performed the same overlapping analysis of 
the whole brain and found that wordlike and non-wordlike patterns also 
overlapped in the left inferior temporal cortex, insula, inferior parietal 
cortex, inferior frontal cortex, supplementary motor area, and precentral 
cortex (Supplementary Fig. 2 and Supplementary Table 1). 

Activation intensity. We examined whether there were differences 
in activation intensity between the wordlike and non-wordlike condi
tions within the same location of the VOTC (i.e., ROIcommon and POI
common). While the primary focus of the analyses was to examine 
differences between the wordlike and non-wordlike categorical condi
tions, we also explored the contrasts between these conditions and the 
baseline condition to measure the extent of neural signal changes 
induced by categorical training. These analyses were applied to both the 
one-back and categorization tasks. The results of the activation intensity 
analysis are illustrated in Fig. 4. 

For the categorization task, the mean activation intensities (beta 
values) of the ROIcommon in the wordlike and non-wordlike conditions 
were significantly greater than those in the baseline condition (wordlike 
vs. baseline: 3.16 ± 0.50 vs. 2.12 ± 0.49; t18 = 6.63, FDR-corrected, p <
0.001; non-wordlike vs. baseline: 2.94 ± 0.48 vs. 2.12 ± 0.49; t18 =

5.02, FDR-corrected, p < 0.001). There was a tendency for the intensities 
in the wordlike condition to be greater than those in the non-wordlike 
condition, but the difference was not significant (t18 = 1.35, p =
0.19). Furthermore, the intensities of the POIcommon in the wordlike and 
non-wordlike conditions were significantly greater than those in the 
baseline condition (wordlike vs. baseline: 2.59 ± 0.40 vs. 1.11 ± 0.32; 
t18 = 7.79, FDR-corrected, p < 0.001; non-wordlike vs. baseline: 2.32 ±
0.38 vs. 1.11 ± 0.32; t18 = 7.45, FDR-corrected, p < 0.001). Most 
importantly, the intensities in the wordlike condition were significantly 
greater than those in the non-wordlike condition (t18 = 2.43, FDR-cor
rected, p = 0.03) (Fig. 4). These results demonstrated that wordlike and 
non-wordlike training induced different activity intensities at the same 
location in the VOTC. 

For the one-back task during the post-training scan, the activation 
intensities of the ROIcommon in the wordlike and non-wordlike conditions 
were marginally significantly greater than those in the baseline condi
tion (wordlike vs. baseline: 0.45 ± 0.15 vs. 0.29 ± 0.16; t18 = 2.55, FDR- 
corrected, p = 0.02; non-wordlike vs. baseline: 0.43 ± 0.16 vs. 0.29 ±
0.16; t18 = 1.96, uncorrected, p = 0.07). There were no significant dif
ferences in the activation intensities between the wordlike and non- 
wordlike conditions (t18 = 0.34, p = 0.74). Similarly, the activation 
intensity values of the POIcommon in the wordlike and non-wordlike 

Fig. 2. The average behavioral performance for the three training conditions in 
the final examination and fMRI scan. (A) The wordlike (blue) and non-wordlike 
(yellow) conditions both had four different testing tasks, and the baseline 
condition (green) had one testing task. The y-axis represents the accuracy (%) 
of the testing task in the final examination. The full names of the tasks in the 
training stages are given in Fig. 1C. (B) Performance on the categorization task 
during post-training scanning. The y-axis represents the inverse efficiency score 
(IE) as reaction time (RT) divided by the accuracy (ACC) in the categorization 
task. Error bars represent the standard errors of the mean (SEMs). 

Fig. 3. Activation location of the two trained categories within the VOTC during the categorization task. (A) At the group level, the activation locations of the 
wordlike (blue) and non-wordlike (yellow) conditions are shown alongside their overlap regions (green). The gray boundary line marks the VOTC region, 
encompassing voxels in the inferior occipital gyrus, fusiform gyrus, parahippocampal gyrus, and inferior temporal cortex of the left hemisphere (axis y ranged from 
-90 to -30) defined by WFU_PickAtlas’s IBASPM 116 atlas. (B) A comparison of individual peak voxel coordinates along the X, Y, and Z axes between the wordlike 
(blue) and non-wordlike (yellow) conditions. 
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conditions were both significantly greater than those in the baseline 
condition (wordlike vs. baseline: 0.10 ± 0.11 vs. –0.10 ± 0.13; t18 =

2.74, FDR-corrected, p = 0.01; non-wordlike vs. baseline: 0.10 ± 0.10 
vs. –0.10 ± 0.13; t18 = 3.25, FDR-corrected, p = 0.004). No significant 
differences were observed between the wordlike and non-wordlike 
conditions (t18 = 0.01, p = 0.99). The lack of significant differences in 
categorical comparisons may be attributed to the low cognitive demand 
in this task. 

For the one-back task during the pre-training scan, the intensities 
between the three conditions showed no differences regardless of 
whether the ROIcommon (0.65 ± 0.25 vs. 0.67 ± 0.25 vs. 0.72 ± 0.27; ps 
> 0.30) or POIcommon (0.26 ± 0.13 vs. 0.26 ± 0.10 vs. 0.34 ± 0.12; ps >
0.30) was considered. These results suggest that the activation in
tensities of the three conditions were comparable before the categorical 
features were learned. 

The above results demonstrated that the two categorical conditions 
had activation intensities comparable to the baseline condition before 
the subjects were trained to associate the stimuli. However, training in 
these two categories generated stronger activation compared to training 
at the baseline. Importantly, word training induced stronger activation 
than nonword training. In other words, learning each of the two cate
gorical features activated the same location but at different intensities 
within the VOTC. 

Activation pattern. We utilized three distinct multivariate pattern 
analyses (MVPAs) to examine differences in brain activation patterns 
between the wordlike and non-wordlike conditions in the VOTC. These 
analyses included split-half correlation analysis in the ROIcommon and 
POIcommon to assess the stability of activation patterns, leave-one-out 
SVM analysis in the ROIcommon and POIcommon to determine classifica
tion accuracy between conditions, and leave-one-out SVM searchlight 
analysis across the entire VOTC to identify regions capable of dis
tinguishing different conditions based on activation patterns. These 
analyses were applied to both the one-back and categorization tasks. 

For the categorization task, the split-half correlation analysis 
revealed that the difference (D value) in the activation pattern in the 
ROIcommon between each pair of conditions was significant (wordlike vs. 
non-wordlike: 0.12 ± 0.04, t18 = 2.74, FDR-corrected, p = 0.01; word
like vs. baseline: 0.36 ± 0.06, t18 = 6.30, FDR-corrected, p < 0.001; non- 
wordlike vs. baseline: 0.31 ± 0.06, t18 = 5.08, FDR-corrected, p <
0.001). Similar significant results were also observed for POIcommon 
(wordlike vs. baseline: 0.43 ± 0.08, t17 = 5.17, FDR-corrected, p <
0.001; non-wordlike vs. baseline: 0.29 ± 0.06, t18 = 5.19, FDR-cor
rected, p < 0.001), except for the comparison of the activation patterns 
between wordlike and non-wordlike stimuli (0.02 ± 0.05, t17 = 0.53, p 
= 0.60). The results with no category-specific beta step and no Fisher z 
step also showed a similar pattern of results (Supplementary Fig. 3). 
Moreover, the leave-one-out SVM analysis also showed that each pair of 

conditions had significantly different classification accuracies for the 
activation patterns in the ROIcommon (wordlike vs. non-wordlike: 7.28 ±
3.24, t18 = 2.25, FDR-corrected, p = 0.04; wordlike vs. baseline: 16.58 ±
3.68, t18 = 4.50, FDR-corrected, p < 0.001; non-wordlike vs. baseline: 
14.30 ± 2.99, t18 = 4.78, FDR-corrected, p < 0.001) and in the POI
common (wordlike vs. baseline: 22.72 ± 3.10, t18 =7.33, FDR-corrected, p 
< 0.001; non-wordlike vs. baseline: 18.33 ± 3.45, t18 = 5.32, FDR-cor
rected, p < 0.001), except for in the comparison of the activation pattern 
between wordlike and non-wordlike (4.48 ± 3.39, t18 = 1.32, p = 0.20) 
(Fig. 5). In addition, the leave-one-out SVM searchlight analysis across 
the entire VOTC also yielded a cluster with a significant difference in the 
activation pattern in the VOTC for each pair of the three conditions (GRF 
corrected, voxel-level p < 0.001, cluster-level p < 0.025, one-tailed). The 
cluster representing the pattern difference between the wordlike and 
non-wordlike conditions included 85 voxels (peak coordinates: –48, –50, 
and –16), the cluster between the wordlike condition and baseline 
included 632 voxels (peak coordinates: –56, –50, and –10), and the 
cluster between the non-wordlike condition and baseline included 494 
voxels (peak coordinates: –50, –54, and –12). More relevantly, the three 
clusters strongly overlapped with or contained the ROIcommon (Fig. 6). 
These findings further validate that, compared with other areas within 
the VOTC, the ROIcommon with diverse activation patterns uniquely 
supports distinct representations between the training conditions. 

For the one-back task during the post-training scan, the split-half 
correlation analysis revealed that the D values of the activation 
pattern between each pair of conditions were not significant in the 
ROIcommon (wordlike vs. non-wordlike: 0.03 ± 0.08, t16 = 0.43, p = 0.68; 
wordlike vs. baseline: –0.08 ± 0.06, t16 = –1.31, p = 0.21; non-wordlike 
vs. baseline: 0.13 ± 0.07, t16 = 1.90, p = 0.08); or POIcommon (wordlike 
vs. non-wordlike: –0.02 ± 0.06, t17 = –0.30, p = 0.76; wordlike vs. 
baseline: –0.01 ± 0.08, t17 = –0.12, p = 0.91; non-wordlike vs. baseline: 
0.01 ± 0.05, t17 = 0.20, p = 0.84). The results obtained without 
implementing a category-specific beta step and Fisher z step similarly 
exhibited a consistent pattern (Supplementary Fig. 3). Similarly, the 
leave-one-out SVM analysis in the ROIcommon did not reveal distinct 
activation patterns between each pair of conditions in either the ROI
common (wordlike vs. non-wordlike: 0.23 ± 2.57, t17 = 0.09, p = 0.93; 
wordlike vs. baseline: 2.26 ± 2.86, t17 = 0.79, p = 0.44; non-wordlike vs. 
baseline: 3.13 ± 1.80, t17 = 1.74, p = 0.10) or POIcommon (wordlike vs. 
non-wordlike: 1.26 ± 2.75, t18 = 0.46, p = 0.65; wordlike vs. baseline: 
0.49 ± 2.41, t18 = 0.21, p = 0.84; non-wordlike vs. baseline: –1.81 ±
2.69, t18 = –0.67, p = 0.51) (Fig. 5). Moreover, the leave-one-out SVM 
analysis in the VOTC did not indicate significant clusters with distinct 
activation patterns between each pair of conditions. These null results 
might be due to the low cognitive demand of this task. 

Similarly, for the one-back task during the pre-training scan, the 
difference values of the activation patterns of both the ROIcommon and 

Fig. 4. Activation intensities in the ROIcommon and POIcommon of three training conditions among different tasks (i.e., the categorization task, post-training one-back 
task, and pre-training one-back task). ROIcommon and POIcommon refer to the common activation locations for wordlike and non-wordlike conditions at the group and 
individual levels, respectively. Error bars represent the standard errors of the mean (SEMs). POI = peak of interest, ROI = region of interest. #: p ≤ 0.10; *: FDR 
corrected, p ≤ 0.05; **: FDR corrected, p ≤ 0.01; ***: FDR corrected, p ≤ 0.005. 

X. Luo et al.                                                                                                                                                                                                                                      



NeuroImage 287 (2024) 120520

9

POIcommon between each pair of conditions were not significant based on 
the split-half correlation analysis in both areas (ROIcommon: wordlike vs. 
non-wordlike: –0.1 ± 0.07, t18 = –1.55, p = 0.14; wordlike vs. baseline: 
0.07 ± 0.09, t18 = 0.85, p = 0.41; non-wordlike vs. baseline: 0.13 ±
0.07, t18 = 1.89, p = 0.07; POIcommon: wordlike vs. non-wordlike: –0.01 
± 0.05, t17 = –0.14, p = 0.89; wordlike vs. baseline: 0.08 ± 0.05, t17 =

1.42, p = 0.17; non-wordlike vs. baseline: 0.05 ± 0.06, t17 = 0.86, p =
0.40). The results obtained without utilizing a category-specific beta 
step and Fisher z step consistently demonstrated a similar pattern 
(Supplementary Fig. 3). Moreover, the leave-one-out SVM analysis in 
the ROIcommon (wordlike vs. non-wordlike: 0.71 ± 2.47, t18 = 0.29, p =
0.78; wordlike vs. baseline: –0.49 ± 2.31, t18 = –0.21, p = 0.83; non- 
wordlike vs. baseline: 0.93 ± 2.03, t18 = 0.46, p = 0.65) and the 
leave-one-out SVM analysis in the POIcommon (wordlike vs. non- 
wordlike: 0.58 ± 2.53, t17 = 0.23, p = 0.82; wordlike vs. baseline: 
–0.06 ± 2.71, t17 = –0.02, p = 0.98; non-wordlike vs. baseline: –0.93 ±
3.39, Z = 0.07, p = 0.95) (Fig. 5). The leave-one-out SVM analysis in the 
VOTC also did not reveal any cluster with significant differences in 
activation patterns in the VOTC between the conditions. These results 
suggest that the subjects presented similar activation patterns for the 

three types of meaningless figures before they learned the categorical 
features. 

The above results indicate that the three conditions induced similar 
activation patterns in the VOTC before training. However, after 
approximately 13 training sessions for learning word and nonword 
features, different activation patterns emerged between the conditions, 
indicating an obvious categorical dissociation in the activation pattern 
within the VOTC. 

4. Discussion 

Using meaningless novel figures with different nonvisual features 
and controlled visual features, we investigated how learning experiences 
from top-down processing modulate category-specific regions in the 
VOTC. Our findings indicate that learning experiences from top-down 
processing predominantly impact activation intensity and pattern 
rather than activation location. 

Fig. 5. Results of split-half correlation analysis and leave-one-out SVM analysis for ROIcommon and POIcommon. The categorization, post-training, and pre-training one- 
back tasks are shown from top to bottom. The left side shows the split-half correlation analysis, where the D value represents the difference between within-condition 
and between-condition correlation coefficients. The right side displays the leave-one-out SVM analysis, using the classification accuracy above chance (50 %) to 
detect differences in activation patterns between the two conditions. SVM = support vector machine. The error bars indicate the SEMs. #: p ≤ 0.10; *: FDR corrected, 
p ≤ 0.05; **: FDR corrected, p ≤ 0.01; ***: FDR corrected, p ≤ 0.005. 
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4.1. How top-down nonvisual experience modulates the VOTC 

In the present study, we found that the locations of category-specific 
regions for wordlike and non-wordlike conditions highly overlap. This 
suggested that stimuli with similar visual features but different top- 
down nonvisual features may share the same spatial location in the 
VOTC, which indicated that the location in the VOTC activated by visual 
stimuli might not be determined by the top-down experience but mainly 
by bottom-up visual features. 

Furthermore, our results replicated our recent finding that learning 
the top-down nonvisual features of words (e.g., pronunciation) changes 
the activity intensity in the VOTC’s word-related region (Li et al., 2020). 
This finding is also consistent with the finding that iconic objects (e.g., 
the Eiffel Tower) elicit stronger activation in the VWFA than noniconic 
objects (e.g., towers) (Song et al., 2012). Additionally, we observed a 
significant disparity in activation intensity between the wordlike and 
non-wordlike conditions, suggesting that top-down nonvisual features of 
visual stimuli might contribute to the strength of activation in the VOTC 
(Gauthier et al., 1999; Op de Beeck et al., 2006; Jiang et al., 2007). 
Notably, this difference in activation cannot be solely attributed to the 
familiarity effect, as the final test of behavior training and the catego
rization decision task during fMRI scanning showed no significant dif
ference between wordlike and non-wordlike stimuli. 

The results also showed that in the same location of the VOTC (i.e., 
ROIcommon or POIcommon), the activation pattern for the wordlike con
dition was distinct from that for the non-wordlike condition. The liter
ature has shown that the activation of neural populations in the VOTC 
can represent higher-level features beyond visual information, such as 
orthography (Zhao et al., 2017; Taylor et al., 2019), pronunciation 
(Zhao et al., 2017) and semantics (Martin et al., 2018; Taylor et al., 
2019). These results indicate that the activation pattern of the same 
neural population could also encode different top-down nonvisual fea
tures (Chen et al., 2017; Amaral et al., 2021). 

Overall, our findings support the notion that top-down nonvisual 
features influence the intensity and pattern of activation within the 
VOTC for different categories. The results suggested how top-down in
formation shapes the representation of categories in the human brain 
and provided insights into the complex processes involved in category 
learning and visual object recognition. 

4.2. Possible effects of bottom-up visual experience on the VOTC 

Our experiments revealed that top-down information is essential for 
VOTC’s response. However, we cannot neglect the possible impact of 
bottom-up visual features on VOTC regions. On the contrary, our find
ings may imply a role for visual features in VOTC organization. This is 
evident from our observation that the locations of regions specific to 
stimuli with different nonvisual features but homogenous visual features 
(i.e., wordlike or non-wordlike conditions) exhibited a high degree of 
overlap. Indeed, some training studies have demonstrated that novel 
figures with distinct low-level visual features but the same nonvisual 
features can elicit disparate activation locations in the VOTC, indicating 
the important role of low-level features in determining the topography 
of the VOTC (Moore et al., 2014; Srihasam et al., 2014). These low-level 
visual features might include the stimuli’s curvature (Nasr et al., 2014), 
eccentricity (Levy et al., 2001; Hasson et al., 2002), real-world size 
(Konkle and Oliva, 2011, 2012), shape (Bao et al., 2020), and so on. 
Therefore, if we used another type of visual feature, the location of the 
category-specific region might differ. Additional research is required to 
ascertain whether this category-specific region also exerts discrimina
tive effects on stimuli with other types of visual features beyond those 
explored in our current study. 

4.3. The growth and maturity of category-specific regions in the VOTC 

Our experiments unveiled a category-related effect for the novel 
stimuli with controlled visual features after learning their distinct 
nonvisual category features. However, we cannot disregard the impact 
of inherent factors, such as the connectivity fingerprint of the VOTC, 
which might serve as the structural foundation of the growth of 
category-related regions (Wang et al., 2017; Li et al., 2018). Supportive 
evidence comes from previous studies that have found the white matter 
connectivity pattern between the VOTC and other brain areas can suc
cessfully predict the functional activity intensity of visual stimuli in the 
category-specific regions of the VOTC in adults (Saygin et al., 2011; 
Osher et al., 2016; Ekstrand et al., 2020), even can predict the location of 
the later-appeared VWFA in young children (Saygin et al., 2016). 
Therefore, both the innate characteristics and the acquired experience 
within the VOTC might affect the formation of category-related regions 
in the VOTC. The innate part (e.g., the early presence of domain-specific 
connectivity from the VOTC to other brain regions) might constrain 
where category-related areas will emerge, and experience-driven 

Fig. 6. Results of leave-one-out SVM searchlight analysis across the entire VOTC. From left to right, the red cluster represents the significant searchlight cluster (i.e., 
MVPA cluster) for the contrast wordlike vs. non-wordlike, wordlike vs. baseline, and non-wordlike vs. baseline in the categorization task. The green cluster cor
responds to the location of ROIcommon, and the brown cluster indicates the overlap between searchlight clusters and ROIcommon. 
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learning is similar to a lighter way to let the category-related area finally 
come into existence (Srihasam et al., 2012; Op de Beeck et al., 2019; 
Arcaro and Livingstone, 2021). 

The maturity of category-specific regions is evident in their ability to 
automate the processing of various categories of information, regardless 
of the task demands. For instance, basic visual tasks (e.g., one-back and 
color dot detection tasks) typically yield significant differences between 
categories in the well-known category-specific areas in VOTC (e.g., 
VWFA, FFA) (Stigliani et al., 2015; Coggan et al., 2016). However, the 
categorical distinction between the wordlike and non-wordlike condi
tions disappeared in our one-back experiments. This may be attributed 
to the fact that training in two categories over a short period may not 
lead to the same level of automated processing in the VOTC as observed 
in classic categories like words and faces. In such cases, the VOTC cat
egorizes information differently only when the task involves categorical 
information, necessitating a deeper level of task demand (Ju and Bas
sett, 2020; White et al., 2023). Hence, achieving the maturation of 
category-specific regions may require a considerable amount of time and 
effort (Nordt et al., 2023). 

5. Limitations 

This study has at least the following limitations. 1) Training effects in 
the postscanning one-back task were weaker than those in the catego
rization task, possibly due to the different cognitive demands of pro
cessing learned information between the two tasks. 2) Although the 
participants performed perfectly for all the items, the limited number of 
trained items in each condition, the constrained trained features for each 
item, and the incomparability of these items to real objects in terms of 
familiarity and processing depth may have contributed to a weaker 
training effect in our study. 3) Due to possible limitations in how well 
the training process reflects real-world language acquisition (e.g., the 
grammatical training task may not perfectly mimic the learning of actual 
words), the knowledge gained in the wordlike condition might not 
entirely capture specific word-related information. However, we believe 
it does involve some word-related knowledge, as the pronunciation 
training imitates natural language acquisition, and we observed a sig
nificant overlap between the wordlike clusters and real word regions 
obtained from a meta-analysis using the Neurosynth database (Yarkoni 
et al., 2011) (see Supplementary Fig. 4). Future research calls for the 
incorporation of training tasks with higher ecological validity to obtain 
language representations that closely resemble real language acquisi
tion. 4) We found that the wordlike cluster size in VOTC was larger than 
the non-wordlike cluster size, and the difference in the training size of 
the parameter feature space may impact the cluster size of these 
category-specific regions. 5) During training, subjects might have been 
aware that the visual familiarity condition served as the baseline, 
potentially introducing response bias. However, our study primarily 
aimed to investigate neural differences between the wordlike and 
non-wordlike conditions rather than comparing them to the visual fa
miliarity condition. Therefore, any potential response bias from partic
ipants is expected to have minimal impact on our results. 

6. Conclusion 

Utilizing the feature-based associative learning paradigm for mean
ingless novel figures, we found that learning nonvisual features of 
different categories for the visually controlled novel stimulus affects the 
intensities and patterns of activity in the category-specific area of the 
VOTC but does not influence the activation location. These findings offer 
critical insights into how top-down information about objects is encoded 
into neural representations in the VOTC. 
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