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Abstract

Longitudinal changes in the white matter/functional brain networks of semantic

dementia (SD), as well as their relations with cognition remain unclear. Using a graph-

theoretic method, we examined the neuroimaging (T1, diffusion tensor imaging, func-

tional MRI) network properties and cognitive performance in processing semantic

knowledge of general and six modalities (i.e., object form, color, motion, sound,

manipulation and function) from 31 patients (at two time points with an interval of

2 years) and 20 controls (only at baseline). Partial correlation analyses were carried

out to explore the relationships between the network changes and the declines of

semantic performance. SD exhibited aberrant general and modality-specific semantic

impairment, and gradually worsened over time. Overall, the brain networks showed a

decreased global and local efficiency in the functional network organization but a

preserved structural network organization with a 2-year follow-up. With disease pro-

gression, both structural and functional alterations were found to be extended to the

temporal and frontal lobes. The regional topological alteration in the left inferior tem-

poral gyrus (ITG.L) was significantly correlated with general semantic processing.

Meanwhile, the right superior temporal gyrus and right supplementary motor area

were identified to be associated with color and motor-related semantic attributes.

SD manifested disrupted structural and functional network pattern longitudinally.

We proposed a hub region (i.e., ITG.L) of semantic network and distributed modality-

specific semantic-related regions. These findings support the hub-and-spoke seman-

tic theory and provide targets for future therapy.
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1 | BACKGROUND

Semantic dementia (SD) is a clinical variant of primary progressive

aphasia, characterized by a core symptom of selective and progressive

deterioration of semantic knowledge and asymmetrical atrophy/Lin Huang and Liang Cui contributed equally to this work.
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hypometabolism in the anterior temporal lobe (ATL) (Gorno-Tempini

et al., 2011). Patients with SD present a distinctive and consistent

neuropsychological deficits in semantic knowledge and thus is an ideal

lesion model to uncover the organizational principle and neuroana-

tomic basis of the semantic system (Hodges & Patterson, 2007).

The concept of semantic memory/knowledge was first proposed

by Tulving in 1972, which refers to the explicit knowledge about the

world (Tulving, 1972). Understanding the representation of semantic

knowledge in human brain has long been a topic of great interest in

neuroscience. To date, convergent findings tend to support the hub-

and-spoke semantic representation theory (Lambon Ralph, 2014;

Patterson et al., 2007). According to this theoretical model, the

semantic knowledge of how objects look, sound, move and so on is a

widely distributed neural network. In addition to these modality-

specific regions and connections, the various sensorimotor attributes

connect to and communicate through a shared amodal ‘hub’ to form

transmodal/multi-modal general semantic concept. Thus, damage to

the semantic hub was expected to lead to deficits in a range of gen-

eral semantic processing tasks (e.g., oral picture naming, picture asso-

ciation matching), whereas damage to the modality-specific brain

areas would cause impairment in the corresponding modality proces-

sing assessment (Patterson et al., 2007).

Neuroanatomical facts have supported the view that the semantic

hub lies within the ATL, but the precise location varied from the tem-

poral pole, fusiform gyrus, superior temporal gyrus, middle temporal

gyrus to the inferior temporal gyrus (ITG) across different studies

(Ding et al., 2020; Lambon Ralph, 2014; Patterson et al., 2007). Given

that the semantic network is a highly interactive system and the role

of altered structural and functional network should be considered.

Graph analyses have recently been applied to the brain networks to

elucidate the SD-associated topological changes (Nigro, Filardi,

et al., 2022). Results from functional MRI studies reported reduced

functional connectivity in global/frontolimbic network integration and

demonstrated elevated local connectivity within the prefrontal cortex

in SD, but evidence regarding the topological properties of white mat-

ter network is still lacking (Dev et al., 2021; Pengo et al., 2022). Nev-

ertheless, fewer studies have directly compared the functional and

structural network changes in SD. Although the co-localization of

structural and functional abnormalities/hypometabolism in SD have

been reported in some studies (Acosta-Cabronero et al., 2011; Agosta

et al., 2014; Chen et al., 2019), the inconsistencies must also be

noted.

This study was intended to unravel the differential structural and

functional network topological changes in patients with SD as well as

their cognitive performance with disease progression. We adopted a

graph-theoretic method and a multimodal imaging approach, that is,

grey matter structural (T1), diffusion tensor imaging (DTI) and resting

state functional MRI (rs-fMRI), to construct the whole-brain white

matter structural and functional networks based on the automated

anatomical labeling (AAL) (Tzourio-Mazoyer et al., 2002) atlas in

31 patients at two time points with an interval of 2 years and

20 healthy controls at baseline. We investigated the relationship

between brain topological properties and general/modality-specific

semantic performance. In this research, we aimed to uncover (i) how

would semantic performance progressed in SD as well as their respec-

tive structural and functional network patterns over time; (ii) which

subregion of ATL or other area would be specifically the hub of

semantic network; and (iii) the anatomical underpinnings of modality-

specific semantic knowledge in patients with SD.

2 | METHODS

2.1 | Participants

A total of 51 individuals participated in this study, including

31 patients with SD and 20 healthy controls. All were right-handed,

native Chinese speakers, had normal or corrected-to-normal hearing

and vision, and no history of stroke, head trauma, substance abuse,

psychiatric or other neurological diseases. This study was approved by

the ethics committees of the Huashan Hospital (Approval number:

2009-195) and the Shanghai Sixth People's Hospital (Approval num-

ber: 2022-ky-116). All participants or their person responsible pro-

vided written informed consent.

Thirty-one patients with SD that presented to the memory clinic

of Huashan Hospital in Shanghai, China, from 2011 to 2018, were

recruited with 2-year follow-up (interval months: 24.65 ± 1.66).

Meanwhile, 20 healthy controls were recruited from the community

through advertising at baseline. Diagnosis was reached by consensus

according to the current diagnostic criteria (Gorno-Tempini

et al., 2011) following a comprehensive clinical assessment including:

medical history, neuropsychological assessment, brain MRI and 18F-

FDG PET (Lu et al., 2021). Chinese version of the Mini-Mental State

Examination (MMSE) (Katzman et al., 1988) was used to measure the

general cognitive function.

2.2 | Neuropsychological data collection and
preprocessing

Six general and six modality-specific semantic tasks were designed to

evaluate the semantic behavior of all the participants. General seman-

tic tasks measured the multi-modal semantic knowledge. The

modality-specific semantic tasks examined semantic knowledge on six

specific sensorimotor aspects, that is, form, color, motion, sound,

manipulation and function. Three nonsemantic control tasks involving

no or minimal semantic processing were also assessed. These tasks

were already used in our recent study (Chen et al., 2020) (see Supple-

mentary Material for details).

We used a principal component analysis (PCA) to extract the gen-

eralized semantic performance, detailed in Supplementary Results 2.

Component 1 had a highest loading weight on the six general seman-

tic tasks and low loading weight on the three nonsemantic control

tasks, thus the scores derived from this component were considered

to represent general semantic ability (see Supplementary Material

Table S1).
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2.3 | Brain MRI acquisition

All individuals underwent a whole-brain MRI with a 3T Siemens scan-

ner at Huashan Hospital, including an anatomical T1 scan, a diffusion

weighted scan, and a resting-state functional scan. All the MRI data

was obtained with the same scanner including the follow-up (see Sup-

plementary Material for details).

2.4 | Imaging data preprocessing

T1-weighted images were preprocessed using the computational anat-

omy toolbox (CAT) in Statistical Parametric Mapping (SPM12) software

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Diffusion-

weighted images were preprocessed using a pipeline for analyzing brain

diffusion images (PANDA, 2016.1.3.1, https://www.nitrc.org/projects/

panda). Rs-fMRI data were preprocessed using the graph theoretical net-

work analysis toolbox (GRETNA, v2.0.0, https://www.nitrc.org/projects/

gretna/) (see Supplementary Material for details).

2.5 | Constructing networks

Two basic elements, nodes and edge, are required for the network

construction. For comparison across white matter and functional net-

works, a prior atlas of AAL (Tzourio-Mazoyer et al., 2002) was used to

divide the whole brain into 90 regions, where each region represented

a network node. These network construction methods for both DTI

and rs-fMRI data are based on approaches previously reported (Chen

et al., 2015; Wang et al., 2015) and detailed below.

We used PANDA to construct the whole-brain white matter net-

work. Deterministic tractography was performed in the native space

using FACT (Mori et al., 1999). Specifically, we defined the number of

fiber tracts (FN) between two nodes as the weight of the network

edges. Thus, for each participant we constructed the FN-weighted

white matter network represented by a 90 � 90 matrix. Finally, to

determine whether a node pair was anatomically connected, we used

a group-level threshold of 0.8 to ensure that at least 80% of subjects

had a connection between two brain regions.

To construct functional network, a mean time series was

extracted from each parcellated region (node), and linear Pearson cor-

relation coefficients were then calculated to estimate pairwise func-

tional connectivity as the measurement of network edges. Then, a

90 � 90 correlation network matrix was yielded for each individual.

The absolute values (composed of both positive correlations and neg-

ative correlations) were calculated and a binary network was obtained

for each participant for further analysis.

2.6 | Network analysis

We calculated several widely used global and nodal network graph

metrics to characterize the topological organization of both white

matter and functional networks. Global graph measures include local

and global efficiency, which reflect how well the information propa-

gates throughout the network (Rubinov & Sporns, 2010). We also

calculated the clustering coefficient, characteristic path length,

small-worldness, and assortativity to additionally evaluate the net-

work efficiency for information processing. For regional nodal char-

acteristics, nodal degree centrality (the number of connections

linked directly to a node) and nodal efficiency (how efficient a node

communicates with the others) were estimated to reflect the impor-

tance of the node in the network (Wang et al., 2011). Note that for

the analysis of functional network, we used a sparsity threshold of

the resultant network ranging from 0.05 to 0.4 with an interval of

0.01 and calculated the area under the curve (AUC) for each network

measure to provide a scalar that did not depend on a specific thresh-

old selection.

Network analysis was applied using GRETNA and visualized using

BrainNet Viewer (www.nitrc.org/projects/bnv/).

2.7 | Statistical analysis

Statistical analyses were performed using SPSS Statistics 21.0 (IBM

Corp., Armonk, NY) and GRETNA 2.0.0 software. The significance

level was set at p < .05 (two-tailed) across all comparisons. We com-

pared demographic data between groups by means of independent

two-sample t-tests at baseline and paired t-test at follow-up. Chi-

square test was performed to assess sex difference. For comparison

of behavioral performance and network metrics between patients

and healthy controls, an analysis of covariance (ANCOVA) was used

to evaluate between-group differences (adjusted age, sex, and edu-

cation). Longitudinal data in SD group between two time points was

analyzed using a repeated measure of ANCOVA to minimize the

potential bias of age, sex, or education. We assumed minimal change

in the control group over time, and therefore did not include them in

the longitudinal analyses. To evaluate the statistical differences in

multiple nodal metrics, we applied the FDR method to correct the

multiple comparisons. Partial correlation analyses were used to

assess the relationships between graph metrics and behavioral per-

formance, controlling for age, sex, and education. FDR method was

also used to correct for multiple comparisons of partial correlation

analyses.

3 | RESULTS

3.1 | Demographic and cognitive performance

See Table 1. No differences in age, sex, or education were found

between SD and control groups. Notably, only a portion (23/31) of

the patients had available fMRI data. Participants' raw scores on the

semantic assessments are shown in Table 2. After controlling for the

effects of age, sex, and education, the SD group exhibited profound

deficits in the general semantic tasks and almost all modality-specific

HUANG ET AL. 3
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semantic tasks compared with healthy controls at baseline. From a

longitudinal perspective, patients showed significant decline in both

general and modality-specific semantic tasks. No significant decline

was observed in nonsemantic control tasks.

3.2 | Cerebral atrophy pattern

Figure 1 illustrates the comparison of the grey matter volume

between patients and controls at baseline and follow-up (p < .01,

FDR-corrected). Patients demonstrated most severe atrophy in bilat-

eral temporal lobes, insula and ventral frontal lobes at baseline, and

extended to more posterior temporal regions, frontal, parietal and

occipital areas.

3.3 | Global topological organization of SD

The global and local efficiency of overall functional and white matter

networks were depicted in Figure 2. At baseline, no significant dif-

ference in the global efficiency was found between patients and

controls in both the functional (F[1,38] = 0.10, p = .757, patients:

0.180 ± 0.010, controls: 0.182 ± 0.009) and white matter

(F[1,46] = 0.14, p = .712, patients: 0.231 ± 0.035, controls: 0.244

± 0.012) network; Likewise, there was no significant difference in

the local efficiency of the functional (F[1,38] = 3.64, p = .063,

patients: 0.255 ± 0.010, controls: 0.255 ± 0.009) and white matter

(F[1,46] = 3.47, p = .069, patients: 0.365 ± 0.047, controls: 0.391

± 0.035) network. At 2-year follow-up, patients had a significantly

decreased global efficiency (F[1,41] = 4.57, p = .038, 0.172 ± 0.013)

and lower local efficiency (F[1,41] = 4.76, p = .034, 0.247 ± 0.014) in

the functional network; while no significant difference was observed

in the white matter network (global efficiency: 0.222 ± 0.041,

F(1,57) = 1.32, p = .256; local efficiency: 0.360 ± 0.065,

F(1,57) = 0.06, p = .814). Moreover, we observed a decreased small-

worldness, and a higher characteristic path length in the global func-

tional network organization with disease progression. Results of

other global network measures such as clustering coefficient, charac-

teristic path length, small-worldness, and assortativity were provided

in Supplementary Table S2.

3.4 | Regional topological organization of SD

The differences in nodal metrics (degree centrality and nodal effi-

ciency) among each group depicted the alterations in regional

TABLE 1 Demographics and neuropsychological tests.

Index
Healthy controls
(baseline), n = 20

Semantic dementia
(baseline), n = 31

Semantic dementia
(follow-up), n = 31

Baseline comparison Follow-up comparison

T/χ2 Df p T Df p

Age (years) 60.50 ± 3.85 63.13 ± 6.22 64.9 ± 6.28 �1.66 49 .104 NA NA NA

Sex (Male:Female) 8:12 14:17 14:17 0.132 1 .716 NA NA NA

Education (years) 10.45 ± 2.82 12.13 ± 3.44 12.13 ± 3.44 �1.79 49 .080 NA NA NA

Disease duration

(years)

- 3.58 ± 0.94 5.63 ± 0.92 NA NA NA NA NA NA

DTI/fMRI 20/20 31/23 31/23 NA NA NA NA NA NA

General mental status

MMSE (max = 30) 28.10 ± 1.373 22.48 ± 3.723 17.10 ± 4.61 6.45 49 <.001* 6.62 30 <.001*

Language

BNT (max = 30) 22.10 ± 3.28 6.81 ± 3.93 3.35 ± 3.55 14.46 49 <.001* 4.18 30 <.001*

Memory

CFT delayed recall

(max = 36)

16.55 ± 6.57 11.16 ± 5.86 7.48 ± 5.98 3.06 49 .004* 3.26 30 .003*

Visuo-spatial function

CFT copy

(max = 36)

34.25 ± 2.02 32.48 ± 3.58 31.39 ± 5.58 2.01 49 .05 1.74 30 .092

Executive function

TMT-B, seconds 147.10 ± 43.80 176.52 ± 70.16 201.03 ± 82.16 �1.67 49 .101 �1.56 30 .130

Calculation

(max = 7)

6.50 ± 0.69 6.61 ± 0.67 6.52 ± 0.51 �0.58 49 .563 0.90 30 .374

Note: Values are expressed as mean ± standard deviation.

Abbreviations: BNT, Boston naming test; CFT, complex figure test; DTI/fMRI, numbers of individuals with MRI scans; df, degree of freedom; MMSE, mini-

mental state examination; NA, not applicable; TMT-B, trail making test-part B.

*p < .05.
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topography across the functional and structural network (Figure 3,

Supplementary Table S3).

At baseline in the white matter network, a number of temporal

and frontal/prefrontal regions showed marginal decreases in degree

centrality in SD group, including the left inferior temporal gyrus (ITG.

L), bilateral olfactory cortex (OLF), opercular part of right inferior fron-

tal gyrus (IFGoperc.R), right gyrus rectus (REC.R), medial orbital part of

right superior frontal gyrus (ORBsupmed.R), and right supplementary

motor area (SMA.R). Meanwhile, two regions showed changes in

nodal efficiency, including decreased ITG.L and increased SMA.R. In

the functional network, increased nodal efficiency was obtained in the

left middle frontal gyrus (MFG.L).

At follow-up, numerous brain areas showed longitudinal changes

in regional topologies, but none survived the correction for multiple

comparisons. In the white matter network, the right superior temporal

gyrus (STG.R) and paracingulate gyrus (ACG.L) showed significant

decreased degree centrality. In the functional network, the right tem-

poral lobe of superior temporal gyrus (TPOsup.R) and bilateral amyg-

dala (AMYG) showed decreased degree centrality. Otherwise, decline

in nodal efficiency was observed in the AMYG.L in the functional

network.

3.5 | Relations between nodal metrics and
semantic performance

To explore the general and modality-specific semantic-related regions,

the relations between degree centrality of white matter network and

semantic performance were investigated (see Figure 4). The six gen-

eral semantic tasks (Table 1) examined the general ability of semantic

processing with various modalities of input and output, thus the nodal

metrics which are significantly correlated to the semantic PCA scores

derived from these tasks could be the hub region linking different

aspect of semantic knowledge.

At baseline, only the ITG.L degree centrality of white matter net-

work was identified to be positively correlated with general semantic

processing extracted by PCA analysis (see Supplementary Material in

detail), after controlling for age, sex, and education (r = 0.523,

p = .018, FDR-corrected).

At follow-up, the differences of degree centrality in white matter net-

work and cognitive performance in patients were calculated before and

after, and their correlations were analyzed accordingly, adjusted for age,

sex, and education. The decreased STG.R was positively correlated with

color verification (r = 0.444, p = .018, FDR-uncorrected); and decreased

SMA.R was positively correlated with manipulation matching (r = 0.565,

p = .002, FDR-corrected) and motion matching (r = 0.432, p = .022,

FDR-uncorrected). Moreover, the declined ITG.L was observed to be posi-

tively correlated with function verification (r = 0.606, p = .001, FDR-cor-

rected), manipulation verification (r = 0.593, p = .001, FDR-corrected)

and motion matching (r = 0.476, p = .01, FDR-uncorrected).

4 | DISCUSSION

Our study evaluated the topological changes in brain white matter and

functional network as well as cognitive performance in 31 SD at two time

points with 2-year follow-up. We measured the correlation between

regional nodal metrics with patients' semantic performance. Results

showed that SD exhibited aberrant general and modality-specific semantic

impairment compared to healthy controls, and gradually worsened over

time. Overall, the brain networks of SD showed a decreased global and

local efficiency in the functional network organization but a preserved

structural network organization at follow-up. With disease progression,

both structural and functional alterations were found to be extended to the

F IGURE 1 Brain atrophy map of semantic dementia. The figure shows the areas with significant differences in gray matter volume between
semantic dementia and healthy controls at baseline and follow-up (p < .01, FDR-corrected).
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temporal and frontal lobes. Finally, we found that the ITG.L was signifi-

cantly correlated with general semantic processing and suggested to be the

hub of semantic network. Moreover, the modality-specific semantic

knowledge was located in distributed regions. To our knowledge, this is the

first study to report the longitudinal functional and structural network pat-

tern relatedwith semantic performance in a relatively large SD sample size.

F IGURE 2 Global measures for functional and white matter network. (a) Group differences in global graph properties of functional and
structural networks were quantified for semantic dementia and healthy controls at baseline and follow-up, adjusted for age, sex, and education.
Error bars represent the standard deviation. (b) Functional and white matter brain network matrices weighted by averaged functional connectivity
(FC) and averaged fiber numbers (FN) in patients and controls. Note that these matrices are symmetrical.
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4.1 | Semantic performance with disease
progression

In accordance with our previous study (Chen et al., 2020), patients

displayed marked impairments in both general and modality-specific

semantic performance, and deteriorated gradually at follow-up. In

verbal tasks, the decreases in six different tasks from baseline to year

2 were of similar magnitude, whereas in nonverbal tasks, the patients

tended to have a larger decrease in motion verification but not in

manipulation/function verification. It indicated that in nonverbal

semantic tasks, the impairments of motion and manipulation/function

in SD were separated.

F IGURE 3 Brain regions demonstrated significant group differences in regional nodal metrics. Regions colored in red showed increased nodal
metrics, and blue with decreased nodal metrics in semantic dementia in the functional (a–c) and white matter (d–f) network (p < .05). ACG,
anterior cingulate and paracingulate gyri; AMYG, amygdala; IFGoperc, inferior frontal gyrus; ITG, inferior temporal gyrus; MFG, middle frontal
gyrus; OLF, olfactory cortex; opercular part; ORBsupmed, superior frontal gyrus, medial orbital; REC, gyrus rectus; SMA, supplementary motor
area; STG, superior temporal gyrus; TPOsup, temporal pole: superior temporal gyrus.

F IGURE 4 The general and modality-
specific semantic-relevant regions.
Regions colored in red were positively
correlated with general semantic
processing, and green with modality-
specific semantic performance. ITG.L, left
inferior temporal gyrus; STG.R, right
superior temporal gyrus; SMA.R, right
supplementary motor area.
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4.2 | Disrupted organization of structural and
functional networks in SD

At baseline, disrupted structural and functional network changes were

demonstrated in SD group. Regional abnormalities in the left temporal

and bilateral frontal were identified in the white matter network,

whereas changes in the left prefrontal areas were recognized in the

functional network. At follow-up, decreased nodal metrics extended

to temporal and frontal lobes in both functional and structural net-

works. These areas, functioned as association, paralimbic and subcor-

tical, were also reported to have decreased or increased functional

activation in previous studies (Bejanin et al., 2019; Schwab

et al., 2020).

It has been reported that the peak atrophy in SD at baseline was

in the TPOsup, extending to the left middle temporal and ITG, fusi-

form, AMYG, and anterior cingulate cortex; With disease progression,

atrophy becomes more distributed to the middle and inferior frontal

lobes, posterior temporal gyrus, and inferior parietal areas (Collins

et al., 2017; Peet et al., 2021; Planche et al., 2023). Although it has

been widely accepted that SD is associated with predominant atrophy

of ATL, limited evidence is available regarding both the structural and

functional network abnormalities, especially the changes with disease

progression. Advanced multi-modal neuroimaging, such as fMRI, DTI

and PET, has been essential to uncover the underlying neuropathol-

ogy and explore preclinical stages, with a greater sensitivity than sin-

gle structural MRI (Jiskoot et al., 2019; Younes & Miller, 2020). For

instance, the utilization of FDG-PET to distinguish different patterns

of metabolic abnormalities is also a promising approach to predict pro-

gression to SD (Cerami et al., 2017). The FDG-PET allowed the assess-

ment of local and long-range disconnections in neural networks, and

was able to identify dysfunctional connectivity patterns in different

variants of frontotemporal dementia (FTD), providing complementary

results of structural and functional MRI and contributing to a more

accurate classification of these patients (Bejanin et al., 2019, 2020;

Malpetti et al., 2019). However, although studies have reported

extensive changes in both structural and functional connectome in

SD, less is known about how these changes are related to the seman-

tic symptoms from a longitudinal perspective. The current available

researches are mostly based on cross-sectional data. Only a minority

follow-up studies to date have been somewhat limited by small sam-

ple size (Bejanin et al., 2020; Binney et al., 2017; Cousins et al., 2018;

Kumfor et al., 2016; Staffaroni et al., 2019; Younes et al., 2022), and

even none containing both functional and structural network analysis.

In the current study, we used the global and local graph proper-

ties to identify specific patterns of functional and structural alter-

ations and investigated the neural correlates of cognitive performance

in SD. Graph theory allows describing the brain as a complex network

identifying topological properties that reflects global and local infor-

mation communication, which has been increasingly applied in evalu-

ating the brain connectivity in FTD (Nigro, Filardi, et al., 2022). Recent

studies have reported that the abnormalities of SD in brain structure

and function were predominantly in the frontal, temporal, and subcor-

tical regions, progressing to posterior areas eventually (Yu

et al., 2021). In this study, patients presented with a similar distribu-

tion of abnormal network variation including the temporal and frontal

regions. Moreover, we observed a decreased global and local effi-

ciency, a decreased small-worldness, and a higher characteristic path

length in the global functional network organization in SD, which

could reflect lower integration in the overall brain functional network

but a preserved structural network organization with 2-year follow-

up. To date, only a few studies adopted graph theory analysis and

demonstrated decreased global efficiency in the global functional net-

work organization of SD cross-sectionally (Agosta et al., 2014; Reyes

et al., 2018; Tao et al., 2020). Another recent research also observed a

reduced small-worldness in the structural brain network in patients

with SD (Nigro et al., 2022). At the local level, reduced degree central-

ity and nodal efficiency were found in the left middle and superior

temporal lobes, fusiform, AMYG, entorhinal cortex, hippocampus, and

insula (Agosta et al., 2014; Nigro et al., 2022). These studies are par-

tially concordant with our results and further confirmed our findings.

4.3 | The semantic hub and distributed modality-
specific semantic knowledge

Only the ITG.L was found positively correlated with general semantic

processing. With disease progression, decreased ITG.L degree central-

ity was associated with decline of multi-modal semantic tasks. These

findings indicated that the ITG.L was pivotal in multi-modal semantic

processing, and had the potential to be the hub in semantic network.

The atrophy of ITG.L has been reported to be associated with seman-

tic tasks (Boeve et al., 2022; Playfoot et al., 2018). However, previous

studies did not directly clarify the critical role of ITG.L in combining

multimodal knowledge within the semantic network.

Since the ITG.L is also a subregion of ATL, our study supports the

notion that the hub of semantic network lies in the ATL. Notably, this

result is a bit different from our previously published research indicat-

ing the left fusiform gyrus as the hub region (Chen et al., 2020).

Anatomically, the ventral surface of ATL is separated by the occipito-

temporal sulcus, where the fusiform gyrus is located medially and the

ITG is laterally (Lin et al., 2020). Thus in this study, semantic activation

was revealed in a more lateral ATL region. The ITG is connected to

frontal, parietal and occipital lobes via multiple tracts of connecting

pathway (e.g., arcuate fasciculus, inferior longitudinal fasciculus, U-

fiber); It is also connected to the superior/middle temporal gyri, ento-

rhinal cortex, and fusiform gyrus via short association fibers within

the temporal lobe. The presence of these fiber tracts suggests the

function of ITG in semantic processing (Agosta et al., 2010; Lin

et al., 2020). One study investigated the semantic activation using

fMRI, SD atrophy and transcranial magnetic stimulation (TMS). They

obtained activation in the ATL region and was centered on the left

fusiform gyrus and the ITG.L (Binney et al., 2010). Another study com-

paring the functional connectivity changes in behavioral, semantic,

and nonfluent variants of FTD has reported a major disconnection of

the ITG.L in patients with SD (Reyes et al., 2018). As the fusiform

gyrus is far away from the scalp, the ITG.L could be an alternative for
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the target brain region of TMS treatment. Therefore, our findings also

provide a rationale for therapeutic development in future studies.

Although recent studies have provided convergent evidence for

the distributed-plus-hub semantic representation model, there are still

ongoing debates about how different aspects of semantic knowledge

are distributed across human brain. Some studies hypothesized that

semantic attributes were tightly yet separately packed into the poste-

rior temporal, frontal and inferior parietal areas (Reber et al., 2019;

Woollams & Patterson, 2018). For example, one study reported three

key white matter tracts linking the ATL with module-related cortices,

that is, written word forms (fusiform face area), abstract lexical repre-

sentations (posterior/superior temporal cortices), and face/object rep-

resentations (visual word form area) (Sundqvist et al., 2020). Our

results revealed that the STG.R was associated with color attribute,

and the SMA.R was associated with function, motion and manipula-

tion attributes, supporting the notion that different aspects of seman-

tic knowledge are stored in distributed brain areas. Some previous

studies offered similar insights. For example, one neuroimaging

research demonstrated that performing color perception tasks acti-

vated the ventral temporal gyrus (Simmons et al., 2007); and the SMA.

R was located in the frontal area, which was also reported to be sub-

stantial for the manipulation of the semantic database (Vignando

et al., 2020; Wagner et al., 2001).

Limitations should be noted. First, we did not examine the direct

relationships between functional/structural connectivity and cognitive

performance. As the artefact/noise was higher in fMRI, and not all

patients had both modalities performed, the results have to be inter-

preted with caution. Further studies with complementary techniques

such as the metabolic connectivity analysis of FDG-PET scans might

have the potential to detect early changes in the functional networks

with lower noise level. Second, some nodal metrics did not observe

significant results surviving the correction for multiple comparisons.

An enlarging of sample size could further verify our findings. Third,

this study only included longitudinal data for patients with SD, lacking

follow-up results for the control group. Future studies exploring the

longitudinal differences between SD and NC groups would provide

more evidence supporting our conclusion. Finally, the noncognitive

behavioral symptoms rather than language problems in patients with

SD, such as disinhibition, irritability, apathy and loss of empathy

deserve greater attention. These issues need to be addressed in future

research.
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