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lesion-symptom mapping

Mingyang Li,1 Luping Song,2 Yumei Zhang,3 and Zaizhu Han1,4,*

SUMMARY

Oral word reading is supported by a neural subnetwork that includes graymatter
regions and white matter tracts connected by the regions. Traditional methods
typically determine the reading-relevant focal gray matter regions or white mat-
ter tracts rather than the reading-relevant global subnetwork. The present study
developed a network-based lesion-symptommapping (NLSM)method to identify
the reading-relevant global white matter subnetwork in 84 brain-damaged pa-
tients. The global subnetwork was selected among all possible subnetworks
because its global efficiency exhibited the best explanatory power for patients’
reading scores. This reading subnetwork was left lateralized and included 7
gray matter regions and 15 white matter tracts. Moreover, the reading subnet-
work had additional explanatory power for the patients’ reading performance af-
ter eliminating the effects of reading-related local regions and tracts. These find-
ings refine the reading neuroanatomical architecture and indicate that the NLSM
can be a better method for revealing behavior-specific subnetworks.

INTRODUCTION

Oral word reading refers to the process of generating sounds upon seeing a visual word and is an evolutionarily

recent and far-reaching ability of humanity. Modern functional neuroimaging studies using noninvasive tech-

niques (e.g., functional MRI and magnetoencephalography) in healthy subjects and neuropsychological lesion-

symptommapping studies involving brain-damagedpatients have generally agreed that this ability is subserved

by a left-lateralized brain subnetwork (Bates et al., 2003; Fedorenko and Thompson-Schill, 2014; Hagoort, 2019;

Schlaggar and McCandliss, 2007; Seidenberg and McClelland, 1989; Skeide and Friederici, 2016). For instance,

these authors found that the ‘‘visual word form area’’ (VWFA) in the left fusiform gyrus is responsible for ortho-

graphic processing (Carreiras et al., 2013; Cohen et al., 2000; Dehaene et al., 2010; Li et al., 2020; Schlaggar

and McCandliss, 2007; Tan et al., 2005), Wernicke’s area in the left superior temporal gyrus (STG) is responsible

for phonological processing (Chenet al., 2019;Dewitt andRauschecker, 2013; Price, 2012), andBroca’s area in the

left inferior frontal gyrus (IFG) is responsible for articulation and syntactic processing (Price, 2012; Sahin et al.,

2009). In addition to these gray matter regions, other scholars have revealed some word reading-relevant white

matter tracts, including the left inferior longitudinal fasciculus (ILF), which is responsible for orthographic process-

ing (Epelbaum et al., 2008; Sarubbo et al., 2015; Wang et al., 2020; Yeatman et al., 2013; Zemmoura et al., 2015),

the left arcuate fasciculus (AF), which is responsible for phonological processing (Bernal and Ardila, 2009; Catani

and Mesulam, 2008; Han et al., 2014; Yeatman et al., 2012), the inferior longitudinal fasciculus (IFOF), which is

responsible for semanticprocessing (Agostaet al., 2010;Hanetal., 2013), and the left superior longitudinal fascic-

ulus (SLF), which is responsible for language articulation (Johnson et al., 2015; Kamali et al., 2014; Li et al., 2017).

Although functional neuroimaging studies in healthy individuals could reveal the cortical regions activated

during a reading task, whether the activated regions obligatorily participate in word reading remains un-

known (Rorden and Karnath, 2004). In contrast, lesion studies in patients should be able to determine the

necessary components (e.g., regions and connectivity) by investigating the associations between lesioned

components and disrupted behavioral performance (Bates et al., 2003; Friedrich et al., 1998; Han et al.,

2013; Rorden and Karnath, 2004; Smith et al., 2006). However, the mass-univariate approach used in previ-

ous lesion studies (e.g., voxel-based lesion-symptommapping [VLSM], Bates et al., 2003 and region-based

lesion-symptom mapping [RLSM], Friedrich et al., 1998; Menon, 2011) has been criticized due to the

assumption of cortical localizationism. In this case, lesion studies should be inferred based on connectivity
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data beyond local areas (Catani et al., 2012). Indeed, tract-based lesion-symptom mapping (TLSM) has

been used to discover the white matter tracts underlying specific behaviors (Gleichgerrcht et al., 2017;

Han et al., 2013; Smith et al., 2006). However, previous studies using lesion methods only identified

behavior-related focal gray matter regions or single white matter tracts in the neural network (Friedrich

et al., 1998; Han et al., 2013; Menon, 2011).

To overcome the limitations of locality in lesion studies, some researchers began to adopt network-based

methods to divide the whole-brain network into different subnetworks (e.g., language subnetwork, atten-

tion subnetwork, and default mode subnetwork; Adhikari et al., 2017; Gordon et al., 2016; Griffis et al., 2020;

Hagmann et al., 2008; Power et al., 2011). However, whether the detected subnetworks are truly associated

with cognitive functions remains unclear. This is because most studies labeled specific cognitive functions

to the subnetworks based on the possible roles of individual regions in the subnetworks in the literature,

rather than statistical analysis results of the relationship between the detected subnetworks and the behav-

iors of interest using actual data.

To resolve the above issues, the current study developed a network-based lesion-symptom mapping

(NLSM) method to identify the word reading-relevant white matter subnetwork in 84 Chinese speakers

with brain damage (Figure 1). The NLSM used a high-dimensional model to obtain the whole reading-

related subnetwork instead of the partial components of the subnetwork. Specifically, each patient was in-

structed to read 140 Chinese words aloud that were used to evaluate their reading performance, and brain

neuroimaging data were collected and used to reconstruct their white matter network. Among all white

matter subnetworks (i.e., all combinations of the components in the whole brain), we searched for the sub-

network whose global efficiency (Latora and Marchiori, 2001) could optimally account for the variation in

oral word-reading performance using unbiased data-driven methods. Specifically, the subnetwork with

the highest explanatory power for the variability in reading performance was identified as relevant to

reading ability. The number of potential subnetworks was too large (z1027) to be exhausted under the pre-

sent computational conditions. A genetic algorithm (GA, Goldberg, 1989) was adopted to reduce the

computational load. Moreover, our findings were further validated by performing three additional tests

(i.e., permutation test, leave-one-out cross-validation, and repeatability) and controlled for the potential

influence of all reading-related focal regions and tracts.

RESULTS

Behavioral performance

The mean oral word reading accuracy of the 84 patients was 88% (SD = 19%; range: 19%–100%; see details

in Table S3), suggesting that the word reading ability of our patients was impaired.

Whole-brain white matter network of patients

Wefiltered thewhitematter atlas of 842healthyparticipants (Griffis et al., 2020; Yehet al., 2018) by 90preselected

regions (automated anatomical labeling [AAL] atlas, Tzouriomazoyer et al., 2002) and obtained 998 white matter

tracts. The tracts included 305 left intratracts, 252 right intratracts, and 441 intertracts that connected regions in

the left hemisphere, the right hemisphere, and both hemispheres, respectively. Most tracts (990 tracts) were

lesioned in at least one patient (left intratracts: 98%; right intratracts: 99%; and intertracts: 100%; Figure 2A).

Regarding themost commonly lesioned tracts (i.e., top 20%)basedon the number of affectedpatients,morepa-

tients had lesions in the intertracts (158/441, 36%) than in the left intratracts (57/305, 12%;c2=25.82,p<0.001) and

right intratracts (7/252, 3%;c2=96.56,p<0.001).Morepatients exhibiteddamage in the left intratracts than in the

right intratracts (c2=34.35,p<0.001). In contrast, regarding the least commonly lesioned tracts (i.e., bottom20%)

basedon thenumberofaffectedpatients, fewerpatientshad lesions in the intertracts (48/441, 11%) than in the left

intratracts (75/305, 25%;c2=24.60,p<0.001) and right intratracts (82/252, 32%;c2=49.35,p<0.001). Therewasa

slight difference in the number of patients with left and right intratract lesions (c2 = 4.31, p < 0.04; Figure 2B; see

Figure S1 for the lesion distribution of the patients).

Subnetwork of word reading

To obtain the optimal reading subnetwork, we investigated the explanatory power (i.e., R2) of the global

efficiency of each candidate subnetwork for reading performance using the GA procedure based on the

objective function (see STAR Methods for details). For a given n value (the number of nodes included in

the subnetwork), we conducted the GA procedure 200 times and obtained the maximum R2 value each
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time. The n value range was 2–30 (see Figure 1). The R2 values in this range formed an inverted U curve

with increasing numbers of regions in the subnetworks (Figure 3A). When the n value was equal to 8, the

subnetworks reached the maximum R2 value (mean = 0.53; SD = 0.005). The top 10 mean R2 values cor-

responded to n values: 6–15. When the 2000 subnetworks with the top 10 R2 values were overlaid, we

obtained the incidence of each of the 90 regions (Figure 3B and Table 1). The frequency of the 45 regions

in the left hemisphere (mean = 0.19; SD = 0.29) was higher than that of the 45 regions in the right hemi-

sphere (mean = 0.05; SD = 0.07; t = 3.13, p < 0.005). The high-frequency regions were also mainly distrib-

uted in the left hemisphere. For instance, the regions with the top 10 highest frequencies, except for the

right Heschl gyrus (532/2000 = 27%), were all left lateralized, including the left inferior occipital gyrus

(IOG: 99%), middle temporal gyrus (MTG: 97%), insula (92%), Rolandic operculum (92%), STG (66%), trian-

gular inferior frontal gyrus (TrIFG: 55%), middle occipital gyrus (MOG: 55%), supramarginal gyrus (SMG:

34%), and superior partial lobe (SPL: 29%).

Figure 1. Flow chart of the network-based lesion-symptom mapping (NLSM)

(1) The spared fibers were extracted by removing the tracts that pass through the brain lesion mask of the patient based on the healthy atlas; (2) the spared

network matrix was reconstructed by extracting the spared fibers between each pair of the 90 gray matter regions in the AAL90 atlas; (3) the spared network

was weighted based on themean FA value in the tract mask; (4) the objective function of the relationship between the global efficiency of the subnetwork and

word reading performance was constructed; (5) the genetic algorithm (GA) procedure was calculated based on the objective function; (6) the optimal

subnetwork in a GA procedure for a given n value was selected; (7) an incidence map of the 10 n values with the top mean R2 values in the above subnetwork

pool were generated; and (8) the reading subnetwork was identified according to the incidence map (see STAR Methods for details).
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When we exhausted all possible subnetworks within the top 16 regions in the incidence map, we obtained

an optimal subnetwork whose global efficiency could maximally explain the reading performance of the

patients (R2 = 0.54; Figure 3C). This subnetwork was considered associated with word reading and included

7 regions and 15 white matter tracts in the left hemisphere (Figure 3D). The seven regions included the left

IOG, MTG, operculum rolandic (OpR), insula, TrIFG, SMG, and thalamus. The 15 tracts were distributed in

the following 6 major white matter pathways described in the atlas constructed based on healthy subjects

(Yeh et al., 2018): the left AF, SLF, ILF, IFOF, U-fibers, and corticothalamic pathway (CT) (Figure 3E). The

global efficiency of this subnetwork was significantly positively correlated with the corrected reading scores

(i.e., the residual of the accuracy of oral word reading after controlling for demographic variables and dis-

ease duration) of the 84 patients (r = 0.74, p < 10�6; Figure 3C).

Validation of the reading subnetwork

To determine whether the reading subnetwork obtained in the above analyses was reliable, we performed

the following analyses.

Permutation test

We reconducted the NLSM program using the same analysis described above, except that each patient’s

reading score was randomly matched with the brain imaging data of another patient. Thus, we obtained a

new set of 2000 R2 values from 2000 permuted subnetworks. These permuted R2 values (0.11 G 0.06) were

significantly lower than those of the actual 2000 subnetworks (0.54G 0.01; Mann-Whitney U test, U = 54.91,

p < 10�6; Figure 4A) and the reading subnetwork that we identified (R2 = 0.54, sign test, z = 44.70, p < 10�6).

This finding demonstrates that the obtained reading subnetwork was not a random event.

Cross-validation

We used data from 83 patients to build themodel, and the remaining patient’s data were used to conduct a

test at each n value (10 n values in total). For each patient, we obtained a predicted word-reading score per

n value. The predicted scores were significantly correlated with the actual scores across the 84 patients per

n value (rs = 0.44 to 0.59, median r = 0.54, p < 10�6; Figure 4B). These results suggest that the NLSM pro-

cedures used to obtain the reading subnetwork should not have an overfitting problem.

Repeatability

When NLSMwas performed again, the newly obtained 2000 subnetworks were highly similar to the original

subnetworks. The ranking order of the incidence frequencies of the 90 regions between the original and

new subnetworks was significantly correlated (Spearman correlation: rho = 0.99). More importantly, the

Figure 2. Lesion overlap of the white matter tracts in 84 patients

(A) Lesion overlap map of white matter tracts in the 84 patients. The value of each cell denotes the number of patients with lesions on the tract connecting the

corresponding two regions. Cells shown in white indicate no white matter connection between two regions. The order of the arrangement of the regions in

Figure A is provided in Table S4.

ll
OPEN ACCESS

4 iScience 24, 102862, August 20, 2021

iScience
Article



newly identified reading subnetwork was exactly the same as the original subnetwork, and both subnet-

works included the same regions and tracts (Figure 4C). This replication seems to indicate that the random

selection and arbitrary parameters of our procedures should not seriously affect our findings.

Controlling for the potential influence of reading-related focal regions and tracts

To further determine whether the optimal reading subnetwork obtained by our NLSM still had

additional explanatory power for the patients’ reading performance even after eliminating the effects of

reading-related local regions or tracts, we correlated the reading scores with the global efficiency of the

NLSM-obtained reading subnetwork after regressing out the effects of focal components. Two groups

of confounding variables were separately introduced in this correlational analysis. Each group included

the lesion volume of each reading-related region and the mean FA value of each reading-related tract.

The reading-related regions and tracts in the first group were extracted by RLSM and TLSM methods

(see STAR Methods for details), respectively. Those in the second group were derived from the NLSM-ob-

tained reading subnetwork (Figure 3). The first group had 7 reading-related regions (Figure S2A and Table

S1) and 11 reading-related tracts (Figure S2B and Table S1) in the left hemisphere, while the second group

had 7 regions and 15 tracts. We found that the global efficiency value of the NLSM-obtained reading

Figure 3. Results of the reading subnetwork identified by network-based lesion-symptom mapping

The error bar in (A) indicates the standard deviation derived by conducting the GA procedure 200 times for a given n value. (B) shows the regions or tracts

with an incidence higher than 0.10.

Abbreviations: IOG, inferior occipital gyrus; MTG, middle temporal gyrus; SMG, supramarginal gyrus; TrIFG, triangular inferior frontal gyrus; OpR, Rolandic

operculum; AF, arcuate fasciculus; IFOF, inferior longitudinal fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus; CT,

corticothalamic pathway.
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subnetwork was still significantly correlated with word reading performance of patients even after partial-

ling out the influence of the regions and tracts (the first group: partial r = 0.47, p< 0.0001; the second group:

partial r = 0.37, p < 0.005). This demonstrates that the NLSM-obtained reading subnetwork had additional

explanatory power for reading performance beyond the simple accumulation of individual reading-rele-

vant regions and tracts.

DISCUSSION

The present study revealed a reading subnetwork containing 7 left hemisphere regions and 15 tracts by

applying an NLSM method to 84 brain-damaged patients. In particular, we used global efficiency as a charac-

teristic measure of a subnetwork and identified a subnetwork in the whole brain to optimally account for the

variation in reading scores. To save computation time, we applied a heuristic method (i.e., GA) to identify

the fittest reading subnetwork. The obtained reading subnetwork was highly reliable, was not accidental, could

predict the reading score of new patients, and was replicable. Relative to the measures of focal gray matter re-

gions (lesion percentage) or white matter tracts (mean FA value), the current NLSM could identify a subnetwork

whose global efficiency had an additional contribution to reading performance.

Table 1. Incidence of 90 anatomical regions in 2000 subnetworks

Order Incidence

Anatomical

Order Incidence

Anatomical

Order Incidence

Anatomical

Region Region Region

1 0.998 IOG_L 31 0.092 MidCi_R 61 0.001 OpR_R

2 0.967 MTG_L 32 0.077 OrMeFG_L 62 0.001 Hippocampus_R

3 0.92 STG_L 33 0.07 Rectus_L 63 0.001 Angular_L

4 0.918 Insula_L 34 0.07 Caudate_R 64 0.001 Amygdala_R

5 0.657 OpR_L 35 0.068 Pallidum_R 65 0.001 AntMTG_R

6 0.555 MOG_L 36 0.065 Hippocampus_L 66 0 OrSFG_L

7 0.555 TrIFG_L 37 0.065 SMA_R 67 0 MFG_L

8 0.339 SMG_L 38 0.062 MidCi_L 68 0 SMA_L

9 0.287 SPL_L 39 0.045 Putamen_R 69 0 MeSFG_L

10 0.266 Heschl_R 40 0.044 SOG_L 70 0 Calcarine _L

11 0.262 SPL_L 41 0.043 Pallidum_L 71 0 Lingual_L

12 0.227 Thalamus_L 42 0.038 Thalamus_R 72 0 AntSTG_L

13 0.215 OLF_R 43 0.037 Precuneus _L 73 0 MFG_R

14 0.167 IPL_L 44 0.034 OrMeFG_R 74 0 Insula_R

15 0.166 OrMFG_R 45 0.031 OrIFG_R 75 0 Calcarine_R

16 0.162 IPL_L 46 0.029 PCL_L 76 0 Lingual_R

17 0.162 Rectus_R 47 0.022 Heschl_L 77 0 SOG_R

18 0.161 Caudate_L 48 0.016 AntMTG_L 78 0 MOG_R

19 0.16 Caudate_L 49 0.013 OpIFG_R 79 0 IOG_R

20 0.151 OrIFG_L 50 0.012 TrIFG_R 80 0 Fusiform_R

21 0.145 PosCi_L 51 0.006 OrMFG_L 81 0 PoC_R

22 0.141 Fusiform_L 52 0.006 Cuneus_L 82 0 SPL_R

23 0.14 PosCi_R 53 0.005 PrC_L 83 0 IPL_R

24 0.132 PCL_R 54 0.004 PHA_R 84 0 SMG_R

25 0.12 OLF_L 55 0.004 ITG_L 85 0 Angular_R

26 0.117 AntCi_L 56 0.004 Cuneus_R 86 0 Precuneus _R

27 0.116 OLF_L 57 0.003 PoC_L 87 0 STG_R

28 0.115 Fusiform_L 58 0.002 PrC_R 88 0 AntSTG_R

29 0.111 Amygdala_L 59 0.001 SFG_L 89 0 MTG_R

30 0.108 PHA_L 60 0.001 Putamen _L 90 0 ITG_R

L, left hemisphere; R, right hemisphere. The full name of each region is provided in Table S4.
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Differences between NLSM and traditional lesion-symptom mapping methods

Traditional lesion-symptom mapping methods seek to determine the focal gray matter regions or white

matter tracts associated with a given cognitive function (Bates et al., 2003; Friedrich et al., 1998; Medina

et al., 2010; Smith et al., 2006). These methods map measures of the local properties of regions or tracts

of interest to specific behavioral performances of patients. However, these methods independently

consider the effects only in a single region or tract and overlook the interactive function in the whole

network.

However, the present NLSM method assumes that reading ability relies on distributed brain areas and white

matter tracts among these areas (Fedorenko and Thompson-Schill, 2014; Hagoort, 2019; Skeide and Friederici,

2016).We adopted global efficiency tomeasure the information flow in the subnetwork and found a subnetwork

that could maximally explain the variation in reading deficits across patients. Furthermore, the significant corre-

lation between the global efficiency of the identified reading subnetwork and reading performance persisted

even when ruling out the effects of all areas and tracts in the subnetwork.

Reading subnetwork identified by the NLSM method

The 7 regions in the reading subnetwork identified by the NLSMmethod have been repeatedly reported to

be involved in language information processing. Remarkably, although our sample included few patients

with lesions in the posterior occipital area, we still observed robust inclusion of the left IOG in the reading

subnetwork. The left IOG is adjacent to an important reading area, i.e., the VWFA (Cohen et al., 2000; De-

haene and Cohen, 2011). The left MTG has been reported to engage in reading processing (Price, 2012; Wu

et al., 2012). The locations of the left insula and TrIFG are close to the classic Broca’s area (Dronkers, 1996;

Sahin et al., 2009), the left SMG and OpR in the dorsal pathway are critical for speech processing (Dewitt

and Rauschecker, 2013; Price, 2012), and the left thalamus might be involved in semantic, syntactic, and

articulation processing (Johnson and Ojemann, 2000; Price, 2012; Wahl et al., 2008). Our results suggest

that the interactive function (evaluated by global efficiency) among these areas is highly related to word-

reading abilities in literate individuals.

The 15 tracts in our optimal reading subnetwork were distributed in six major white matter pathways

described in the atlas constructed from healthy subjects (Yeh et al., 2018). Four of these pathways (the

Figure 4. Results of the validation analysis of the reading subnetwork
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left AF, SLF, ILF, and IFOF) were discovered to participate in word reading-relevant processing (Fang et al.,

2018; Hagoort, 2019; Han et al, 2013, 2014; Wang et al., 2020; Yeatman et al., 2013). The corticothalamic

pathways mainly connected the thalamus and cortical regions, and the U-fibers primarily connected two

adjacent region areas, such as the left insula-TrIFG, in our data.

We identified a functionally specialized subnetwork supporting oral word reading. However, word reading

involves multiple processes, such as orthographic recognition, orthographic to phonology mapping, and

oral production (Price, 2012). In general, each process is not subserved by a single region or tract. Instead,

these processes are supported by the complex coupling mechanism of many regions and tracts. For

example, visual word form recognition relies on an interaction between the ventral occipital-temporal cor-

tex and other higher-level language regions (Carreiras et al., 2013; Li et al., 2020; Price and Devlin, 2011; see

the opposite view in Dehaene and Cohen, 2011). Therefore, the connectivity pattern among different

cortical areas plays a more critical role in supporting cognitive functions (Fedorenko and Thompson-Schill,

2014).

Notably, our reading task was performed in the Chinese language. Prior studies found that alphabetic and

morpho-syllabic writing systems share common regions (e.g., the left ventral visual cortex, superior poste-

rior temporal area, and IFG). However, Chinese word reading might include additional involvement of the

left middle frontal area (MFG) and the right ventral occipital-temporal cortex (Bolger et al., 2005; Tan et al.,

2001; Wu et al., 2012; Zhu et al., 2014). Our optimal reading subnetwork mainly contained the regions

shared by two writing systems (e.g., the left IOG, MTG, and TrIFG) but not Chinese-specific regions

(e.g., the left MFG and right ventral occipito-temporal cortex). Therefore, the reading subnetwork identi-

fied in the present study should be language-general.

In addition, our materials in the reading task contained various semantic categories. Prior studies have un-

covered that these categories might rely on dissociated brain tissues. We also observed that our patients

presented categorical differences in reading performance and reading subnetworks (see details in Fig-

ure S3 and Table S2). Briefly, a higher reading accuracy was observed in response to common objects

(0.85–0.91) and faces (0.89) than actions (0.85). Similarly, living categories (0.89–0.91) had higher accuracy

than nonliving categories (0.85–0.88). The reading subnetwork identified by collapsing all categories (i.e.,

the mean reading network) had 7 regions. Four (the left IOG, MTG, OpR, and insula) of the 7 regions were

shared by the reading networks of each category, and each of the other three regions appeared in the net-

works of at least 5 categories (the left SMG and thalamus: 5 categories; TrIFG: 6 categories). However, we

observed the following five category-specific regions outside the mean reading network: the left caudate,

left STG, left MOG, left IPL, and left SPL. Note that the limited number of items in each of the categories (20

items) might not be robust enough to reflect the validated behavioral performance for these categories. In

addition, the NLSM approach might also lead to some noise in the results due to the random sample fea-

tures (such as the VLSM approach, Lorca-Puls et al., 2018). Therefore, the detailed components for cate-

gory-specific anatomical structure should be further investigated with more reliable behavioral measures

and larger sample sizes of the patients.

Further methodological considerations regarding the NLSM

The purpose of the NLSM is to select the subnetwork most relevant to behavior from all possible subnet-

works. Specifically, in relation to the other subnetworks, the selected subnetwork has the maximum power

to explain the variation in the behavior (i.e., the optimal subnetwork). Ideally, we should first calculate the

explanatory power of each subnetwork and then select the optimal subnetwork. However, the computation

amount was too large (approximately 1027) to be completed using the current computer ability. To solve

this problem, we adopted an approximate calculation procedure (i.e., GA) to reduce the computational

load. This procedure included some arbitrary steps. In the final arbitrary step, we selected and included

16 regions from the 90 regions in the subsequent analyses. Indeed, the selection of the 16 regions was

not determined by complete subjectivity. Instead, we mainly considered the following two factors: (1)

the number of regions in the optimal subnetwork among the 2000 subnetworks and (2) the computational

capability of modern computers. We found that the optimal subnetwork included 8 regions (Figure 3A).

This finding suggests that the optimal subnetwork probably contained approximately 8 regions. The top

16 regions (twice as many as 8 regions) in the incidence map should contain the optimal combination of

regions in the optimal subnetwork. Moreover, modern computers could exhaustively calculate all possible

subnetworks of the 16 nodes (n = 65,535). Therefore, we included the 16 regions with the highest incidence
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in the subsequent analyses. Notably, we should select as many regions in this step under the condition of an

acceptable computation time. The bottom line shows that the number of selected regions was not smaller

than that in the optimal subnetwork.

The above description of NLSM shows that NLSM differs from typical permutation-based inference. First,

the number of built models differs between these approaches (NLSM: multiple models; permutation-

based inference: one model). Second, the approach of selecting the behavior-related components in

the whole network differs between these approaches. The NLSM selects the behavior-related subnetwork

by comparing the explanatory effects of all possible subnetworks. Therefore, NLSM selects the best sub-

network among all subnetworks and does not need to set the significance threshold. In contrast, permuta-

tion-based inference selects behavior-related regions or connections by setting a certain significant

threshold in a distribution of a model obtained in a permutation (e.g., the 95th percentile).

Caution should be taken when making inferences regarding the results of NLSM analyses. After all, the

selected subnetwork was only the most relevant to the behavioral performance under a given patient sam-

ple and specific measures. The reliability and meaningfulness of the identified subnetwork should be

further estimated in depth. In the present study, multiple analyses (e.g., permutation test, leave-one-out

cross-validation, and repeatability) were performed to confirm the psychological reality of the results. In

addition, we observed that not all seven regions in the optimal reading subnetwork had the highest inci-

dence in the incidence map (Figure 3B and Table 1). Therefore, some regions with a high incidence

(e.g., the left STG with the fourth highest incidence) did not appear in the optimal subnetwork, which

may suggest that reading processing is supported by multiple separate subnetworks and that the missing

regions in the optimal subnetwork were pivotal nodes in other subnetworks. In brief, the interpretation and

inference of the results of NLSM should consider various factors (e.g., the validation results, incidence map,

and explanatory power of each subnetwork).

Conclusion

Wepropose amethod (NLSM) for identifying the reading subnetwork in a group of patients with brain dam-

age. The method considered the integrated effect rather than the local effect of the network and identified

an elaborate reading subnetwork with high ecological validity and high explanatory power, thereby

providing direct evidence of the systematic function of the subnetwork in reading processing. This new

method could be widely used to reveal potential subnetworks responsible for specific behaviors in lesion

studies.

Limitations of the study

This study has at least the following caveats. (1) The global efficiency of the identified reading subnetwork

accounted for only a part (54%) but not all of the reading performance of the patients likely. This may be

because the global efficiency may not be the most sensitive to measuring the integrity of a neural network;

the 90 AAL regions were very large in size (e.g., STG) such that some reading-unrelated cortical issues or

white matter fibers were involved in our analyses; or the effects of the reading-relevant regions or tracts

without lesions were not considered. (2) When the whole-brain white matter network of a patient was re-

constructed, a tract was defined to exist if it included at least one intact fiber (Figure 1A). This cut-off might

not be optimal. (3) Our present analyses were based on the assumption that the global efficiency of the

reading network should linearly correlate with the reading performance of the patients. If the correlation

is actually nonlinear, our findings require modification. (4) The distribution of the reading scores was highly

skewed with a ceiling effect, and this lack of behavioral variation likely impacted the power of the results of

the current NLSM.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, ZaiZhu Han (zzhhan@bnu.edu.cn).

Materials availability

The study did not generate new unique reagents.

DATA AND CODE AVAILABILITY

� The data (e.g., 3D lesion images, FA images, and intermediate NLSM results) used in this study area

available at the Mendeley Data (https://data.mendeley.com/datasets/mycvb6dy8r/draft?

a=7c3885ea-a3c0-4c51-b1e4-2771fd432a78).

� The code (e.g., source codes and guidance) used in this study are also available at the Mendeley

Data (see above link)

� Any additional information is available from the lead contact upon request

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants

Eighty-four patients with brain damage (65 males) from the China Rehabilitation Research Center were re-

cruited using the following criteria. The patients suffered from first-time brain injury at least one month

postonset (mean = 6.25 months, SD = 12.36 months; range: 1–86 months), had no other neurological or

psychiatric diseases (e.g., schizophrenia or depression), and were able to follow the task instructions.

Most of patients (n = 69) suffered from stroke, and the other patients suffered from traumatic brain injury.

The patients’ mean age and education were 44.65 years (SD = 13.42 years) and 12.79 years (SD = 3.32 years),

respectively. All patients were native Chinese speakers and right handed (Oldfield, 1971). The detailed de-

mographic information of each patient is shown in Table S3. The lesions of the patients were widely distrib-

uted, with most patients having lesions in the insula and surrounding white matter tissues (see details in

Figure 2 and Figure S1). Sex and/or gender might have potential influence on our results. For example, lan-

guage-related deficits exhibit clear sex differences (Wallentin, 2009). Hence, the gender in our NLSM an-

alyses was treated as a covariate to eliminate its confounding effects.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Brain data and code This paper Mendeley Data (https://data.mendeley.com/

datasets/mycvb6dy8r/draft?a=7c3885ea-

a3c0-4c51-b1e4-2771fd432a78)

Software and algorithms

MATLAB Mathworks https://www.mathworks.com/

SPM FIL https://www.fil.ion.ucl.ac.uk/spm/

BrainVoyager Goebel, 2012 http://www.brainvoyager.com/

PNADA(MATLAB) Cui et al., 2013 www.nitrc.org/projects/panda/

DSI studio Fang-Cheng Yeh http://dsi-studio.labsolver.org/publications

BCT(MATLAB) Rubinov and Sporns, 2010 https://www.nitrc.org/projects/bct/

BrianNet Viewer(MATLAB) Xia et al., 2013 http://www.nitrc.org/projects/bnv/
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The patients provided informed written consent. The study was approved by the institutional review board

of the National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University. Most

patients have been reported in previous focal lesion studies.

METHOD DETAILS

Behavioral data collection and preprocessing

An oral word-reading task was adopted. We selected 140 objects, namely, 20 objects from each of seven

object categories (i.e., animals, tools, common artifacts, fruits and vegetables, large nonmanipulable ob-

jects, actions and famous people). The Chinese written names were presented on the screen, and the pa-

tients were instructed to read the words aloud.

The task was operated by DMDX (Forster and Forster, 2003). Each patient was individually tested in a quiet

room. Pauses for rest were allowed upon request. The word presentation order was pseudorandomized but

identical across the patients.

The first complete response to each word was scored. To exclude the influence of demographic factors and

disease duration on reading performance, the raw accuracy of each patient was corrected by regressing

out four variables (age, gender, education level and disease duration). The corrected scores were treated

as the patients’ reading ability measures in the following analyses.

MRI data collection

The patients were scanned at the China Rehabilitation Research Center with an 8-channel split head coil in

a 1.5 T GE SIGNA EXCITE scanner. The following three types of images were collected: (1) T1-weighted 3D

magnetization-prepared rapid acquisition with gradient echo (MPRAGE) images on the sagittal plane with

the following parameters: matrix size = 512 3 512, voxel size = 0.49 3 0.49 3 0.70 mm3, repetition time

(TR) = 12.26 ms, echo time (TE) = 4.2 ms, inversion time = 400 ms, field of view (FOV) = 250 3 250 mm2,

flip angle = 15�, and slice number = 248; (2) fluid-attenuated inversion recovery (FLAIR) T2-weighted images

on the axial plane with the following parameters: matrix size = 5123 512, voxel size = 0.493 0.493 5 mm3,

TR = 8002 ms, TE = 127.57 ms, inversion time = 2 s, FOV = 250 3 250 mm2, flip angle = 90�, and slice num-

ber = 28; and (3) diffusion-weighted images (DWI), which had two separate sequences with different diffu-

sion weighting direction sets such that 32 directions were covered in total. The first sequence had the

following parameters: 15 diffusion weighting directions, matrix size = 128 3 128, voxel size = 1.95 3

1.95 3 2.6 mm3, TR = 13000 ms, TE = 69.3 ms, inversion time = 0 s, FOV = 250 3 250 mm2, flip angle =

90�, and slice number = 53. The other sequence had the same parameters, except that the sequence

included 17 different directions. The first two volumes were b0 volumes, and the b-value of the other vol-

umes was 1000 s/mm2 in each sequence. All sequences except for the FLAIR T2 images were scanned twice

to improve the quality of the images.

QUANTIFICATION AND STATISTICAL ANALYSIS

Imaging data preprocessing

Structural magnetic resonance imaging data. We first coregistered the two T1-weighted structural im-

aging data on the same native space using the trilinear interpolation method applied in SPM5 to obtain the

averaged structural image (http://www.fil.ion.ucl.ac.uk/spm/software/spm5) and then coregistered and re-

sliced the FLAIR T2 images to the averaged structural image using the trilinear interpolation method in

SPM5. The lesion contours of each patient were drawn on the T1 structural image by two trained persons

slice-by-slice by visually referring to the FLAIR T2 images. This procedure was supervised by a superior radi-

ologist. The patients were excluded if they had very diffuse damage, and we could not precisely demark the

boundary of the lesion. Then, the structural images were resliced into 13 13 1mm voxel sizes. For normal-

ization, some studies adopt an automatic normalization method through which the local detailed informa-

tion of brain images is automatically evaluated and matched (e.g., Price et al., 1998), but this method

cannot exclude the effect of lesions in the brain, which might cause extra distortions in the images. To

resolve this problem, one method is to mask the lesions and use the remaining intact issues for normaliza-

tion processing (Brett et al., 2001). In contrast, manual registration methods might overcome such limita-

tions. Thus, a manual method was adopted in the present study. Specifically, each patient’s structural im-

ages were registered into the Talairach space via the ‘3D Volume Tools’ in BrainVoyager QX v2.0 (www.

brainvoyager.com; Goebel, 2012), and we manually marked the anterior commissure to posterior
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commissure plane and the borders of the cerebrum. The affine transformation matrix between the native

and Talairach spaces was extracted with the ANTs software package (Advanced Normalization Tools, www.

picsl.upenn.edu/ANTS/). The lesion images were transformed into the Talairach space using this matrix

with the ‘WarpImageMultiTransform’ program. Given that the registration procedures were based on

anatomical landmarks without evaluating the local detailed information of the brain, this process was

not affected by the lesions. The lesion image was finally transformed into the MNI space using the affine

transformation matrix between the MNI and Talairach spaces using a similar method.

Diffusion magnetic resonance imaging data. We first merged the two paired sequences into a single

4D nifty-1 format file and their diffusion-weighted gradient tables. Then, we executed BET: skull removal;

Eddycorrect (correction of eddy current distortion) and DTIFIT (build diffusion tensor models) with a pipe-

line tool, PANDA (Cui et al., 2013) (www.nitrc.org/projects/panda/). Fractional anisotropy (FA) maps in the

individual space were generated after performing the above pipeline. Then, we registered these fractional

anisotropy maps with the FMRIB fractional anisotropy template in the MNI space with ANTs (version 1.9).

The normalization included the following two parts: 1) linear rigid affine transform, which first obtained an

affine transform.txt file for each participant and then produced the fractional anisotropy map in the MNI

space with the ‘WarpImageMultiTransform’ program, and 2) nonlinear transform registration, which ob-

tained a more fine-grained normalized fractional anisotropy map of each patient in the MNI space with

the shell script ‘buildtemplate’.

Construction of the whole-brain white matter network of each patient

To identify the white matter subnetwork of word reading, we first reconstructed the anatomical whole-brain

lesion network of each patient (Figure 1A). This process was performed using a white matter connectome

atlas based on healthy people (Griffis et al., 2020; Yeh et al., 2018; http://brain.labsolver.org/diffusion-mri-

templates/tractography). This atlas was created on the basis of high angular DWI data based on 842 healthy

subjects in the Human Connectome Project and contained expert-vetted streamline trajectories in theMNI

space. Specifically, for each patient, we first extracted the spared fibers in the healthy atlas, which bypassed

the brain lesion mask of the patient using DSI studio software (http://dsi-studio.labsolver.org/). Then, we

reconstructed the spared network by extracting the spared fibers between each pair of 90 gray matter re-

gions in the Automated Anatomical Labeling atlas (AAL90 without the cerebellum, Tzouriomazoyer et al.,

2002; see details in Table S4). Finally, we built the FA network by masking all fibers in each pair of regions

that had spared fibers and calculating the mean FA value in the tract mask (i.e., averaged FA values based

on the DWI data of each voxel of the mask per patient). The FA value of a weighting tract in our patient

sample could introduce more individual differences in the connectivity matrix. Therefore, the FA value

might increase the variation in the integrity value of the network across patients and render the network

lesion-deficit correlation reliable. The FA value of the tract connecting the two regions reflected the white

matter connectivity strength of the tract. As a result, a whole-brain FA network containing 90 regions (i.e., a

90 * 90 matrix) was obtained for each patient.

Construction of the objective function of the relationship between the global efficiency of the

subnetwork and the word reading performance

To calculate the global efficiency of a subnetwork, we first calculated the weighted shortest path length

between any pairs in the networks as follows (BCT; Rubinov and Sporns, 2010):

dw
ij =

X

auv˛gw
i4j

f ðwuvÞ

where gw
i4j is the shortest path (geodesic) between regions i and j, auv is the intermediate path of the whole

shortest path, and wuv is the weighted value of path auv . f is a map (e.g., an inverse) from the wuv .

The global efficiency of a subnetwork can be calculated using the following formula (Latora and Marchiori,

2001; Rubinov and Sporns, 2010):

EW =
1

n

X

i˛N

P
j˛N;jsid

w
ij

n� 1
;

whereN is the set of regions in the subnetwork, n is the number of regions, and dw
ij is the weighted shortest

path length between regions i and j. Efficiency provides a precise quantitative measure of the information
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flow in the network (Latora and Marchiori, 2001). This approach enabled us to estimate the influence of

brain damage on the information exchange ability of the whole subnetwork rather than individual gray mat-

ter regions or white matter tracts. Therefore, the relationship between the oral word reading (Sbhv) behav-

ioral performance and the global efficiency values of the network (Ew) could be expressed in the following

regression equation:

Sbhv = a,EW + b+ ε;

where a and b are the regression coefficients, and ε is the error term. By combining the above two equa-

tions, we obtain the following formula:

ε = Sbhv � a

n

X

i˛N

P
j˛N;jsid

w
ij

n� 1
� b:

This formula represents the objective function that needed to be optimized (Figure 1B). In the function, Sbhv
is a known value (i.e., word-reading scores of the patients). We needed to identify the subnetwork (i.e., the

combinations of regions and tracts in the whole network) that could best explain the variation in the word-

reading scores of the patients, i.e., identify the subnetwork that had the minimum error term ε in the func-

tion. The structure of a given subnetwork in the function was determined by the regions and tracts. We at-

tempted to determine the subnetwork whose global efficiency would result in the lowest ε value. Because

the regions and tracts were restricted by the above white matter connectome atlas based on healthy peo-

ple in the current study, our aim was to determine the set of regions N to minimize the ε value in the above

objective function.

To quantitatively depict the degree to which the global efficiency of a reading subnetwork could account

for the variation in reading scores among the patients, we further calculated the explanatory power of the

global efficiency of each reading subnetwork with regard to the variation in reading scores as the coeffi-

cient of determination R2 as follows:

R2 = 1�
Pnsub

i = 1 ðyi � fiÞ2Pnsub
i = 1 ðyi � yÞ2

;

where yi was an observed value (word-reading scores), y was the mean value of all yi , fi was the fitted value

by the above objective function corresponding to the minimum ε value, and nsub was the number of all pa-

tients. Thus, the higher the R2 value of the model, the higher the explanatory power of the subnetwork for

reading scores. Therefore, we attempted to obtain the subnetwork with the maximum R2 value (see

Figure 1C).

Construction of the procedures used to search for the reading subnetwork: genetic algorithm

(GA)

To identify the subnetwork that best explained the variation in the word-reading performance of the pa-

tients, an ideal way was to calculate the R2 values in the objective function of each potential subnetwork

(i.e., all combinations of the 90 regions and their tracts in the whole network) and select the best subnet-

work with the maximum R2 value. However, the number of potential subnetworks was too large (z 1027) to

be exhausted under the present conditions. To reduce the computation time and obtain the best subnet-

work, we adopted a GA (Goldberg, 1989) (Figure 1C). A GA is a heuristic often used to resolve optimization

or search problems based on the principles of natural evolution and survival of the fittest and commonly

includes biologically inspired procedures, such as crossover, mutation and selection. A GA is able to pro-

duce approximate results in less computation time. A GA has been used in different fields, such as complex

networks (Pizzuti, 2012), experimental design optimization (Wager and Nichols, 2003) and engineering

problems (Ahmadi and Dincer, 2010).

We employed the GA function in MATLAB software to determine the fittest word-reading subnetwork from

the whole-brain network. This process underwent the following steps. Notably, most parameters in the

steps were derived from the default values in the MATLAB procedure.

Step 1. Creating the subnetworks of the initial generation through random selection. For a given n

value in the objective function (e.g., n = 10 for a subnetwork with 10 regions), we did not exhaust all sets of

subnetworks in the whole network (i.e., all combinations of 10 regions among the 90 regions, N = 5.72 *
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1012). Instead, using the GA, we first created 100 initial subnetworks (i.e., the first generation; each subnet-

work included 10 regions randomly selected among the 90 regions). Then, the R2 value of each subnetwork

was calculated using the above objective function. Finally, the 5 subnetworks with the maximum R2 values

were selected as better subnetworks because they weremore likely to contain the critical regions that could

explain the behavioral variation. We also randomly selected 80 subnetworks from the remaining subnet-

works. The 85 selected subnetworks, including the 5 better subnetworks, were treated as parents to repro-

duce the new generation in the following step.

Step 2. Creating the subnetworks of the second generation through a crossover between parent
subnetworks and mutation of a small proportion of subnetworks. We performed the following steps.

1) The 85 parent subnetworks were randomly paired, and 100 pairs of subnetworks were selected. 2) Each

pair of subnetworks produced a new subnetwork by combining half of the regions randomly extracted from

each parent subnetwork. If the new subnetwork included the same regions, the combining procedure was

repeatedly conducted until the extracted regions differed. Thus, we obtained 100 new subnetworks. 3) To

increase the search space, one of the 100 new subnetworks was mutated such that 25% of the regions were

replaced with other regions randomly selected from among the 90 regions. 4) The 100 new subnetworks,

including the mutated subnetwork, consisted of the second generation. 5) The 85 new parent subnetworks

from this generation were extracted using the method described in Step 1 and used to reproduce the next

generation.

Step 3. Selecting the best reading subnetwork of the family through the reproduction of many
generations in the family. The above second step was repeated until the coefficients of determination,

i.e., R2 values, of 50 continuous newly reproduced generations did not further increase. All subnetworks

generated in the above steps formed a family for a given n value (i.e., the set of subnetworks with n regions).

The subnetwork with the maximum R2 value was a potentially optimal reading-related subnetwork for that

particular n value.

Extraction of the reading subnetwork

To avoid sampling bias in a subnetwork from a single family for a given n value and obtain a reliable reading

subnetwork, we subsequently carried out the following steps (Figure 1D).

Step 1. Obtaining the subnetwork pool by conducting the GA procedure multiple times for each n
value. The above GA procedure was conducted 200 times per n value (number of regions) of the subnet-

works, and a mean R2 value was obtained for each n value. Theoretically, we should have conducted the

procedures for all n values (i.e., 2 - 90). Practically, to reduce computations, we conducted the procedure

with only values from 2-30 because the subnetworks in this range should include those with themaximum R2

values according to the results of the above analyses.

Step 2. Extracting the incidence map of each region. The 10 n values with the topmean R2 values from

the above subnetwork pool were selected as these subnetworks most likely include the word reading-

related regions and tracts. Thus, we obtained 2000 subnetworks (200 subnetworks/n value * 10 n values)

in total and a map of the incidence of each of the 90 regions from the 2000 subnetworks. The higher the

incidence of a region, the higher the possibility that this region participates in the word-reading

subnetwork.

Step 3. Identifying the reading subnetwork. We extracted a new network whose regions were selected

at a given threshold. (i.e., the top 16 regions in incidence) and tracts with connections between the selected

regions. The perfect method to identifying the optimal subnetwork could follow the logic of leave-last-no-

des out iteration as follows: each time we obtained the results of the above incidence of nodes, we could

remove some nodes with the lowest incidence because these nodes likely had no significant contribution to

the reading task. After many iterations, we obtained a subnetwork that had the maximal explanatory power

for the reading task (the optimal reading subnetwork). However, to save computation time, we directly pro-

ceeded with 16 nodes because the above results showed that a subnetwork with 8 nodes had the maximum

mean R2 value, indicating that the optimal subnetwork probably contained approximately 8 nodes. The top

16 nodes (twice as many as 8 nodes) in the incidence map should contain the optimal combination of re-

gions in the optimal subnetwork. More importantly, all possible subnetworks structured by the 16 nodes
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(n= 65,535) could be exhausted under the present commutating capacity of modern computers. Therefore,

the 16 nodes were introduced to the NLSM program to extract the optimal reading subnetwork.

To further visualize the shape of the identified reading subnetwork, we outlined the trajectories of the

reading tracts. For each reading tract, we extracted all fibers between the two AAL regions connecting

the tract in the healthy white matter atlas (Griffis et al., 2020; Yeh et al., 2018). To understand how the

reading tracts were related to the classic major white matter pathways, we clustered and labeled these

tracts in accordance with the 80 main tracts in the atlas constructed based on healthy subjects (Yeh

et al., 2018).

The BrainNet Viewer package (Xia et al., 2013) was used to display the brain network and DIS studio (http://

dsi-studio.labsolver.org/) was used to display the major white matter tracts.

Validation of the reading subnetwork

To determine whether the reading subnetwork obtained from the above analyses was reliable, we per-

formed the following validation analyses.

Permutation test. To examine whether the reading subnetwork was an accidental event, we conducted

the GA again as described above, except for the corrected reading scores of the 84 patients were randomly

paired with another patient’s brain images. Furthermore, to save computing time, the GA only processed

the top 10 n values that were selected in the above analyses. Similarly, each n value was processed by the

GA 200 times, and in total, 2000 subnetworks and 2000 R2 values were obtained. These 2000 R2 values from

the permuted data were compared with the 2000 R2 values from the above actual data (using the Mann-

Whitney U test) and the R2 value from the subnetwork obtained in the above analyses (using the sign test).

Cross validation. This procedure was employed to estimate whether the procedure used to obtain the

above reading subnetwork had an overfitting problem. We adopted a leave-one-out cross-validation

method to evaluate whether the above objective function, which was established on the basis of 83 pa-

tients, could predict the reading performance of the remaining patient when his or her imaging data

were introduced into the function. Specifically, the above GA used to process the word reading and brain

imaging data of the 83 patients was conducted again while the data from one patient were omitted. To

reduce time consumption, the GA only processed the top 10 n values selected in the above analyses.

Each n value was processed once. The objective function with the maximum R2 value was selected as

the testing function. We input the imaging data from the remaining patient into the testing function and

obtained the predicted reading score of the patient. Thus, each patient obtained a predicted reading

score per n value. We computed the correlation between the actual and predicted reading scores per n

value across the 84 patients.

Repeatability. Some random selections and arbitrary parameters were included in the procedures used

identify the above reading subnetwork [e.g., initial number of subnetworks (100); the number of GA pro-

cedures we performed (200); the number of n values with the top mean R2 values (10); and the threshold

of the nodes used in the final GA procedures (16)]. To verify whether these random and arbitrary factors

influenced our findings, we conducted the above procedures of extracting the reading subnetwork once

again. We examined whether the newly obtained reading subnetwork was the same as the original subnet-

work in structure, and the correlation between the incidences of the regions in the incidence maps was

high.

Controlling for the potential influence of reading-related focal regions and tracts. To test whether

the reading subnetwork obtained by the present NLSM method had an additional contribution to the pa-

tients’ reading performance even after ruling out the effects of reading-related local regions or tracts, we

correlated the reading scores with the global efficiency of the NLSM-obtained reading subnetwork after

controlling for potential confounding variables across the 84 patients. Two groups of confounding vari-

ables were separately introduced in the correlational analyses. Each group included the lesion volumes

of each reading-related region (i.e., the number of voxels with lesions in the region) and the mean FA vol-

umes of each reading-related tract (i.e., average FA values of all voxels in the tract). The regions and tracts

in the two groups were acquired by traditional focal lesion-symptom mapping methods (i.e., RLSM and

TLSM) and the NLSM-obtained reading subnetwork. Specifically, for the traditional methods, we first
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extracted the reading-relevant regions and tracts using RLSM and TLSM (i.e., regionsRLSM and tractsTLSM),

respectively. In RLSM, we correlated the corrected reading scores with the lesion volumes of each graymat-

ter region in the AAL90 atlas across the 84 patients. The regions reaching a significant level (Bonferroni-cor-

rected p < 0.01) were treated as regionsRLSM. TractsTLSM were identified using identical procedures to the

above region-based analysis, except for the 90 regions were replaced with the 998 tracts from the white

matter atlas and the lesion volumes were replaced with the mean FA values. For the NLSM-obtained

reading subnetwork, the lesion volumes of each region and mean FA values of each white matter tract

in the NLSM-obtained reading subnetwork were used as control variables.
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