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Abstract
The functional profiles of regions in the ventral occipital-temporal cortex (VTC), a critical region for

object visual recognition, are associated with the VTC connectivity patterns to nonvisual regions rel-

evant to the corresponding object domain. However, whether and how whole-brain connections

affect recognition behavior remains untested. We directly examined the necessity of VTC connec-

tivity in object recognition behavior by testing 82 patients whose lesion spared relevant VTC

regions but affected various white matter (WM) tracts and other regions. In these patients, we

extracted the whole-brain anatomical connections of two VTC domain-selective (large manmade

objects and animals) clusters with probabilistic tractography, and examined whether such connectiv-

ity pattern can predict recognition performance of the corresponding domains with support vector

regression (SVR) analysis. We found that the whole-brain anatomical connectivity of large manmade

object-specific cluster successfully predicted patients’ large object recognition performance but not

animal recognition or control tasks, even after we excluded connections with early visual regions.

The contributing connections to large object recognition included tracts between VTC-large object

cluster and distributed regions both within and beyond the visual cortex (e.g., putamen, superior,

and middle temporal gyrus). These results provide causal evidence that the VTC whole-brain ana-

tomical connectivity is necessary for at least certain domains of object recognition behavior.
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1 | INTRODUCTION

Object visual recognition is classically considered to be accomplished

by the ventral visual pathway in the ventral occipital-temporal cortex

(VTC; Mishkin, Ungerleider, & Macko, 1983; Ungerleider & Haxby,

1994). The recognition of various domains of objects (e.g., faces, places,

animals, and objects) is related to different clusters within this territory,

as revealed by neuroimaging and patient studies (Aguirre & D’Esposito,

1999; Chao & Martin, 1999; Bi et al., 2016; Damasio, Grabowski, Tra-

nel, Hichwa, & Damasio, 1996; Gainotti, 2000; Kanwisher, McDermott,

& Chun, 1997; Martin, 2007). A recent well-received hypothesis, con-

sistent with the general assumption of coupling between connection

and function (Passingham, Stephan, & Kotter, 2002), proposes that the
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domain-specific distribution for object processing in the VTC is tightly

associated with its structural and functional connectivity patterns,

especially with those regions beyond VTC that process nonvisual

object properties (He et al., 2013; Hutchison, Culham, Everling, Flana-

gan, & Gallivan, 2014; Mahon & Caramazza, 2011; Osher et al., 2016;

Saygin et al., 2012; Wang et al., 2015). Evidence supporting this

hypothesis includes data showing that functional selectivity strength

for scenes or faces can be predicted by whole-brain white matter

(WM) connectivity patterns (Osher et al., 2016; Saygin et al., 2012) and

that the tripartite structure of the stimulus-evoked organization in the

VTC has distinctive resting-state functional connectivity (rsFC) net-

works, with routes through both the early visual cortex and longer

range connections (Konkle & Caramazza, 2016). These studies showing

the association between VTC functionality and its connectivity proper-

ties are correlational in nature and do not address whether these con-

nections are necessary for object perception/recognition behavior or

whether the VTC itself is sufficient.

Does successful object recognition require the orchestration

between the VTC and other regions via intact connections, or do the

VTC connections only support downstream object processing and are

not themselves required in object recognition? Several studies have

focused on the inferior longitudinal fasciculus (ILF)—A major tract that

runs through the VTC and links the occipital lobe anteriorly to the ante-

rior temporal lobe and have not obtained consistent results. Thomas

et al. (2009) have reported that congenital prosopagnosia patients show

significant decreases in fractional anisotropy (FA) of the ILF relative to

healthy controls and that the FA values in right ILF significantly correlate

with facial recognition scores (Tavor et al., 2014). Gomez et al. (2015),

however, did not find such correlation in prosopagnosic individuals, and

instead found that in healthy adults face processing performance was

correlated with the mean FA value of the WM local to the right fusiform

face area (FFA; see also Song et al., 2015 for negative effects of FFA

connection bundles in differentiating developmental prosopagnosia from

healthy controls). They did observe a significant correlation between

place processing performance and the FA values of both local and the

whole fiber forward on the ventral pathway from the left parahippocam-

pal place area (PPA). Nonetheless, it is possible that the local and within-

VTC WM connectional properties are correlated with each other and

only one affected scene/place recognition behavior. More importantly,

the necessity of the orchestration between the VTC and regions beyond

the VTC that process nonvisual object properties (Fernandino et al.,

2016; Lingnau & Downing, 2015; Martin, 2016) remains untested.

This study tested whether the integrity of specific (whole-brain)

connectivity pattern of the VTC is necessary for object recognition in an

inanimate (large manmade objects) domain and an animate (animals)

domain, with brain-damaged patients (N582) whose lesions spared the

functionally selective regions to these two domains in the VTC (large

object selectivity in parahippocampal gyrus/medial-anterior fusiform

gyrus; animal selectivity in posterior lateral fusiform; Chao, Haxby, &

Martin, 1999; He et al., 2013; Wang et al., 2015), but affected widely

distributed brain connections and regions. The rationale is an extension

of the classical lesion-symptom mapping approach (Bates et al., 2003),

which takes advantage of lesion heterogeneity to examine the necessity

of particular brain regions (voxels or connections) by testing the behav-

ioral performances of patients with lesion versus those without lesion.

In the current group, given that the VTC regions of interest (ROIs) were

spared from lesion, the contribution of the VTC-connection pattern to

the specific recognition deficits in patients presumably comes from the

alteration of connections due to lesion (theWM connections and/or the

gray matter (GM) target regions). Using a machine learning approach

(Figure 1), we examined whether the whole-brain WM pattern of the

object domain-selective clusters was predictive of the recognition per-

formance of the corresponding domain in such non-VTC-lesion patients.

A voxel-wise analysis was also conducted for validation.

2 | MATERIALS AND METHODS

2.1 | Participants

Eighty-two brain-damaged patients at 19–76 years of age (68 males,

mean age545 years, SD514), from the China Rehabilitation Research

Center, participated in this study, on the basis of the following inclusion

criteria: no previous brain injury; at least 1 month postonset (mean-

55.43 months; SD511.15; range: 1–87 months; we did not have the

exact postonset times of 7 patients, but all reported to be longer than 1

month); no other neurological or psychiatric disease; able to follow task

instructions; right-handed (measured by Edinburgh Handedness Inven-

tory (Oldfield, 1971)); and no lesions in the ROIs to exclude the local

effect and allow us to study the necessity of structural connections in

recognition behavior. The method used to define ROIs is described below

in detail in Section 2.4. Most of our patients experienced strokes

(n565). We also included patients with other etiologies to maximize

lesion coverage (13 with traumatic brain injury, 1 atrophy, 1 electronic

shock, 1 gas poisoning, and 1 unknown). The patients’mean years of edu-

cation was 12.82 years (SD53.39; range: 2–19 years). The general cog-

nitive states of all patients were measured with the Chinese version of

the Mini-Mental State Examination (Folstein, Folstein, & McHugh, 1975)

and the mean score was 21.10 (SD58.16; range: 0–30) (see Supporting

Information, Table 1 for more detail). Some of these patients overlapped

with those reported in our previous studies (Han et al., 2013).

2.2 | Behavioral data collection

Each patient underwent behavioral testing outside the scanner in a

quiet room. An object form verification task and three control tasks

(Oral Repetition, Number Exact Calculation, and Visual Form Percep-

tion) were measured in multiple sessions. Each session was no longer

than 2 h with pauses for rest or a full stop upon patient request. All

tasks were presented and responses recorded using the DMDX pro-

gram (Forster & Forster, 2003).

2.2.1 | Object form verification

This main task was designed following a “Part Decision” task that was

used tomeasure object recognition ability in a previous study (Caramazza

& Shelton, 1998). It consisted of two separate sessions. In each session,

two gray-scale pictures of object parts were vertically aligned at the cen-

ter of the touch screen, with a “Yes” on the left and “No” on the right.
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Participants were asked to verify whether the two parts were from the

same object or different objects and press “Yes” or “No” on the screen

accordingly (see Figure 4a for examples). Sixty object-part items from

objects from5 categories (i.e., animals, fruit and vegetables, small nontool

objects, tools, and large manmade objects) were taken as target items,

with 12 items from each category to form 24 trials (see Table 1 for the

complete large manmade object and animal items). One matching trial

and one mismatching trial were constructed for each item respectively

by presenting it with a part from the sameobject orwith a part from a dif-

ferent object from the same category, andwere allocated to the two sep-

arate sessions. Thus, the numbers of matching and mismatching trials

were identical across categories and between sessions. One point was

given if the participant responded correctly to a target item on both the

matching andmismatching trials. Responses after a deadline of 60 s were

considered as incorrect and no point was given. The accuracies to large

manmade objects and to animals were considered in this study.

2.2.2 | Control tasks

Three control tasks were included as various types of contrast to the

main object verification task: oral repetition and number calculation that

includes general working memory and executive control without object

processing; visual form perception that assesses low-level aspects of

visual perception. Oral repetition: This task consisted of 8 words (e.g.,

“咬” Bite) and 4 short sentences (e.g., “老师帮助孩子们做作业” The

teacher helps children to do homework). The participants were asked to

repeat the word/sentence after the experimenter, one at a time.Number

exact calculation: This task included seven exact calculation questions: 2

addition questions (e.g., “512”), 2 subtraction questions (e.g., “9 2 4”),

2 multiplication questions (e.g., “2 3 4”), and 1 division question (“6 4

2”). Visual form perception: This task was adapted from a size match task

from the Birmingham Object Recognition Battery (BORB Subtest 3; Rid-

doch & Humphreys, 1993). This task included 30 trials, each containing

two dots of different or same sizes. Patients were required to determine

whether the two dots were of the same size and to press the corre-

sponding choice on a touch screen (see Figure 4a for an example).

2.3 | Imaging acquisition and preprocessing

Patients were scanned with a 1.5 T GE SIGNA EXCITE scanner at the

China Rehabilitation Research Center. Three types of images were

FIGURE 1 Schematic of the processing pipeline. (a) Target region segmentation. The left-top image is an example of the AAL atlas in the
native space of a patient. The yellow ring in the left lower image is the edge of the protecting sphere of the animal ROI of this patient; the
region inside the protecting sphere has been excluded from the AAL atlas. Then, the AAL atlas was parceled into 90 targets (right row). (b)
Fiber tracking. The connection probability of the seed ROI to the other 90 targets was acquired by probabilistic tractography for each patient
(left row). Each patient received a vector of probability values (right row). (c) Normalization of the SVR features. For each patient (labeled by i)
in the training set, the connection probability values, pij, to each target (labeled by j) were Z-normalized across 81 patients (n 2 1 patients) and
transformed into z-scores, Zij. For the remaining patients in the testing set, the probability values (pn1 � pn90) were transformed into z-scores
(Zn1 � Zn90) by the corresponding mean (meanj) and standard deviation (stdj) from the 81 patients in the training set. The behavioral scores
were normalized in the same way. (d) Building the SVR model and computing prediction accuracy. For each patient, an SVR model was trained
with the z-normalized features and labels of other 81 patients (n 2 1 patients). By inputting the z-normalized features of this remaining patient
to the SVR model, we obtained a predicted score for the corresponding behavior task (left and middle). The predicted scores of all 82 patients
were obtained through iterations and were correlated with the actual scores to compute a prediction accuracy (right)
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collected: (1) high-resolution 3D T1-weighted MPRAGE images; (2)

FLAIR T2-weighted images; and (3) diffusion-weighted images. All the

images, except for FLAIR T2 images, were scanned twice to improve

the quality of the images.

2.3.1 | Structural MRI data

The 3D images were obtained on the sagittal plane with the following

parameters: matrix size5512 3 512, voxel size50.49 3 0.49 3

0.70 mm3, repetition time512.26 ms, echo time54.2 ms, inversion

time5400 ms, field of view5250 3 250 mm2, flip angle5158, and

slice number5248. The FLAIR T2 images were obtained on the axial

plane with the following parameters: matrix size5512 3 512, voxel

size50.49 3 0.49 3 5 mm3, repetition time58,002 ms, echo time-

5127.57 ms, inversion52 s, field of view5250 3 250 mm2, flip

angle5908, slice number528. Two T1 images were first co-registered

by a trilinear interpolation method in SPM5 (http://www.fil.ion.ucl.ac.

uk/spm/software/spm5) and then averaged. The FLAIR T2 images

were co-registered and resliced to the native space of the averaged T1

images. Two trained personnel manually drew the lesion contour of

each patient on the averaged T1 images slice by slice, visually referring

to the FLAIR T2 images. The lesion-drawing was supervised and con-

firmed by an experienced radiologist. The structural images of each

patient were resliced into 1 3 1 3 1 mm3 voxel size and then manually

registered into Talairach space via the “3D Volume Tools” in BrainVoy-

ager QX v2.0 (www.brainvoyager.com). The manual registration was

completed on the 3D visual interface. We extracted the affine transfor-

mation between the native and Talairach spaces, which was further

applied to transform the lesion masks into the Talairach space using

the “WarpImageMultiTransform” program in the ANTs software pack-

age (Advanced Normalization Tools, http://www.picsl.upenn.edu/

ANTS/). The lesion masks were then transformed into the Montreal

Neurological Institute (MNI) space and quality-checked for each

patient.

2.3.2 | Diffusion MRI data

Diffusion-weighted imaging had two separate sequences with different

diffusion weighting direction sets with 32 directions being covered in

total. The parameters of the first acquisition were as follows: 15

diffusion-weighting directions, matrix size5128 3 128, voxel

size51.953 1.953 2.6 mm3, repetition time513,000 ms, echo time-

569.3 ms, inversion time50 s, field of view5250 3 250 mm2, flip

angle5908, slice number553. The other acquisition had the same

parameters except that it included 17 different directions. The first two

volumes were b0 volumes, and the b-value of the other volumes was

1,000 s/mm2 in each sequence. For the diffusion-weighted imaging

data of each subject, we first merged the 15 directions and 17

direction-paired sequences into a single 4D image. Then, we prepro-

cessed the images with PANDA (Cui, Zhong, Xu, He, & Gong, 2013),

which incorporates FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The pre-

processing procedure included (a) BET, skull removal; (b) Eddy correct,

correction of eddy current distortion; and (c) DTIFIT, building diffusion

tensor models and obtaining the FA maps.

2.4 | Seed masks and target regions

The overall analysis scheme for WM pattern construction and behavior

prediction is shown in Figure 1. To obtain the connection pattern of

functional selective regions in the VTC, we first defined category-

selective ROIs—large manmade object selective ROI and animal selec-

tive ROI. We defined the ROIs by building sphere ROIs with peak coor-

dinates from a previous fMRI study where 16 healthy subjects viewed

pictures of large objects, tools, and animals (He et al., 2013). Group-

based ROIs from healthy subjects, instead of functional localizers in the

patient groups, were used because of the following reasons: (a) prag-

matically, it is difficult to conduct task-based fMRI with patients with

brain damage, as asking them to lie still for a long time and follow task

instructions are very challenging; (b) theoretically, for our current scien-

tific question, it is more appropriate to import a common template

from the healthy population. We do not necessarily expect every

patient to have normal category-preferring responses in the VTC

TABLE 1 Stimuli in the object form verification task (large man-
made objects and animals)

Category Session 1 Session 2

Large
manmade
objects

Station
board

Station
board

Station
board

Blackboard

Anchor Anchor Anchor Bathtub

Parachute Parachute Parachute Monument

Train Train Train Car

Radiator Radiator Radiator Fence

Tent Tent Tent Pavilion

Monument Refrigerator Monument Monument

Slide Elevator Slide Slide

Chimney Station board Chimney Chimney

Castle Station board Castle Castle

Tank Bus Tank Tank

Pavilion Castle Pavilion Pavilion

Animals Crab Crab Crab Spider

Rooster Rooster Rooster Chimpanzee

Monkey Monkey Monkey Kangaroo

Zebra Zebra Zebra Elephant

Elephant Elephant Elephant Camel

Panda Panda Panda Lion

Frog Mouse Frog Frog

Camel deer Camel Camel

Cat Rooster Cat Cat

Lion Zebra Lion Lion

Penguin Swan Penguin Penguin

Squirrel Monkey Squirrel Squirrel
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regions, because if the category-preference response in VTC is modu-

lated by its connectivity profile (Wang et al., 2015), patients whose

connectivity profile is compromised by lesion may have altered func-

tional responses here. Instead, the research rationale is to test whether

the VTC regions that normally (i.e., in the healthy group) has categorical

preference need to work with other downstream regions to support

recognition behavior of the corresponding category. Thus, importing

the healthy group results is a more direct way for this purpose. Worth

noting is that the activation peak coordinates for the domain of interest

tend to be consistent across studies (e.g., the peak Talairach coordi-

nates in the left hemisphere for large artifacts/scenes is around 228,

239, 26; e.g., Downing, Chan, Peelen, Dodds, & Kanwisher, 2006; He

et al., 2013). Specifically, we obtained the peak MNI coordinates in

bilateral parahippocampal gyrus (PHG) and fusiform gyrus (FG) of clus-

ters selective for large manmade objects and animals with the following

contrasts (uncorrected p<0.001, cluster size >10 voxels): (a) large

manmade objects> animals & tools: left hemisphere 226, 238, 212

and (2) animals> large manmade objects & tools: right hemisphere 35,

249, 218. Then, we generated spheres with 12 mm radii at these

peak coordinates to build the ROIs. We calculated the GM/WM

makeup of the seed ROIs by overlapping the seed ROIs with a WM

and GM mask constructed by T1 segmentation (SPM 8; default thresh-

old), and found that the two seed ROIs did not significantly differ in

the WM percentages (27.3% for animal ROI and 25.4% for large man-

made object ROI, v2 50.849, p5 .357). Given that the neighboring

regions of the ROIs may have extremely high connection probabilities

in fiber tracking, which may bias the statistical results, two 16-mm-

radius protecting spheres with the same centers as the two ROIs were

also generated and cut out from the target regions to build stop masks

for tractography. To define the target regions, we adopted the Auto-

mated Anatomical Labeling atlas (AAL; Tzourio-Mazoyer et al., 2002)

an anatomy-based GM parcellation template commonly used in patient

studies (Caeyenberghs & Leemans, 2014; Cao, Shu, Cao, Wang, & He,

2014; Lo et al., 2010). We used only the cerebrum parts of the AAL

atlas, which had labels from 1 to 90. Note that because the selection of

ROI size is usually arbitrary, we have carried out analyses using a range

of different sizes (radius 6, 8, 10, and 12 mm) to conduct the Support

Vector Regression (SVR) analysis. The result patterns were largely con-

sistent when the radius is bigger than 8 mm. Smaller ROIs may be too

small in relation to the scale of the target ROIs (AAL parcellation), and

those with a radius larger than 12 mm were not tested because they

are too big and tended to reach out of the cerebrum.

To prepare the masks of seeds and targets, we registered two 12-

mm-radius ROIs, two 16-mm-radius protecting spheres and the AAL

atlas in the MNI space to the FA images in patients’ native spaces, so

that we could implement probabilistic tractography for each patient in

native space. To conduct the registration, we used the T1 image of

each patient as intermediate information. Specifically, we first applied

the inverse affine transformation obtained in “structural MRI data” to

transform the two ROIs, the two protecting spheres and the AAL atlas

into the native space of each patient’s T1 image. The aligned ROIs in

patients’ T1 image in their native space of six sample patients were

shown in Figure 3b. For each patient, we registered the FA images in

the MNI space obtained in “diffusion MRI data” to the T1 images in the

native space by using the “FLIRT linear registration” tool of FSL. By

applying the “applywarp” command line in FSL to the images (ROIs,

protecting spheres and AAL atlas) registered to the T1 images and the

FA images registered to the T1 images, we finally registered the two

ROIs, the two protecting spheres and the AAL atlas to the FA images

in the native diffusion spaces of all patients. The two ROIs in the native

space of each patient were used as seed masks in the tractography. For

each ROI, we excluded the protecting sphere from the AAL atlas and

then segmented the AAL atlas into 90 target regions (Figure 1a).

2.5 | Probabilistic tractography

Probabilistic tractography is an algorithm that probes the fiber orienta-

tion probability distributions at each voxel in an ROI, with the advan-

tages of explicitly representing uncertainty in the data (Behrens et al.,

2003) and reconstructing crossing fibers more reliably (Behrens, Berg,

Jbabdi, Rushworth, & Woolrich, 2007; Berman, Berger, Chung, Nagara-

jan, & Henry, 2007). In addition, probabilistic tractography is sensitive

to structural changes that contribute to clinical disability (Ciccarelli

et al., 2006); therefore, we chose this method rather than deterministic

tractography to address our data from brain-damaged patients. We car-

ried out probabilistic tractography with patients’ diffusion-weighted

imaging data to identify regions with a connection with two functional

defined ROIs, by using FMRIB’s Diffusion Toolbox (FDT v3.0, http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT) in FSL 5.0.0. For each patient, we

applied probabilistic tractography to each of the two ROIs in the

patient’s native diffusion space because the target regions of each ROI

differed. The “Bedpostx” program was used to estimate the diffusion

parameters at each voxel of seed ROI. Then, we used “Probtrackx” to

conduct fiber tracking with 5000 streamline samples in each voxel of

seed ROI to each target region, with the connectivity probability of

each voxel to a target region equals to the number of connected

streamlines divides 5,000 (Figure 1b). We then averaged the connectiv-

ity probabilities of all voxels in the seed ROI to the target region. In this

way, the connectivity probabilities to 90 AAL regions, a vector with 90

probability values, of each of the two functional ROIs were acquired

for all patients.

2.6 | Statistical analysis: Support vector regression

We built an SVR model to test whether the behavioral performance

was predicted by the whole-brain structural connectivity pattern. In

this study, performances two recognition tasks (animal form verification

and large manmade object form verification) and three control tasks

(oral repetition, number exact calculation, and visual form perception)

were used as behavioral labels.

For each seed ROI, we adopted a leave-one-subject-out-cross-

validation (LOOCV) approach. Specifically, the SVR model was first

trained with the connection probabilities of each seed ROI (features)

and the behavioral scores from each task (labels) for the 81 (i.e., N 2 1

subjects in all N subjects) patients (Figure 1d). We included regions hav-

ing connections to the seed ROI in more than 10% of subjects (8
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subjects) as SVR features to avoid including false connections. Note

that this step is not “feature selection” in the conventional sense of

machine learning as it is not related to the training labels (behavioral

responses), and thus does not increase the risk of overfitting. The final

number of features being included this way is 26 for the animal-ROI

seed and 17 for the large manmade object-ROI seed, a relatively small

number compared to the 82 samples. We did not perform any further

feature selection step. Before training, the features and the labels of

the training group were Z-normalized across 81 patients in the training

group. The data from the remaining patients were transformed into Z-

scores on the basis of the mean and standard deviation of the data

from the 81 patients. Linear classifiers are sensitive to the way features

are scaled and the accuracy of an support vector classifier can severely

degrade if the data is not normalized (Ben-Hur & Weston, 2010; Chang

& Lin, 2011). The advantages of normalizing include avoiding attributes

in greater numeric ranges to dominate those in smaller numeric ranges

and avoiding numerical difficulties during the calculation, according to

parameter selection guide from LIBSVM (https://www.csie.ntu.edu.tw/

~cjlin/libsvm/). We used z-normalization (also known as standardization

or zero-mean normalization), a method widely used in SVR. It is com-

monly done within features (i.e., across subjects; Li & Liu, 2011;

Stolcke, Kajarekar, & Ferrer, 2008), which makes the feature weights

(magnitude of contribution) more interpretable because the features

have uniform scaling. A further reason for doing normalization across

subjects instead of within patients was because the signals of interest

come from variations across patients for connectivity integrity due to

brain damage, and the impact of such variations on patients’ behavioral

performances. Normalization within patient erases such general effects

of brain damage across patients. Then a score was predicted by the

trained model with the remaining patients’ features (Figure 1c). This

procedure was done iteratively for all patients, such that we obtained a

predicted score for each patient.

We measured the model performance by computing the Pearson

correlation coefficient between the predicted scores from the SVR

model and the actual behavioral scores (Figure 1d), and estimated the

statistical significance using a permutation test. We built models using

the same data but with shuffled patient labels, thus uncoupling the

relationship between the behavioral labels and actual connectional fea-

tures. By repeating this process 10,000 times, we generated a null dis-

tribution of accuracies. The significance of the model was computed by

using the following formula:

p5
ranking11
10;00011

where ranking is the number of Rs in the null distribution of the permu-

tation test that was greater than the actual prediction accuracy from

the SVR model. A threshold of p< .05 was applied.

2.7 | Voxel-wise validation analysis

To avoid any potential bias using the group-level functional-defined

ROIs, we conducted a validation voxel-wise analysis without being con-

strained by functional ROIs and attempt to visualize the potentially sig-

nificant voxel distributions. In this analysis, probabilistic tractography

was done and SVR models were built for each voxel in two anatomi-

cally defined regions: bilateral FG and PHG. We excluded patients who

have any lesion in these regions, with 72 remaining patients (59 males;

mean age546, SD514; mean number of years of education512.99,

SD53.29; the mean score of MMSE test521.22, SD58.18). We

resliced the bilateral FG and PHG from AAL atlas into 2 3 2 3 2 mm3

voxels with AFNI (Analysis of Functional NeuroImages, http://afni.

nimh.nih.gov/) to correspond to the FA image resolution and registered

them to the FA images in the native diffusion spaces of all patients. For

each voxel, an SVR model was built predicting behavioral performances

with the voxel’s WM connectivity patterns using the same method as

described above, except for the statistical testing method. Due to the

heavy computation burden in the voxel-wise level analysis, we used

1,000 times permutation test to estimate the statistical significance of

SVR models. The formula to compute the significance of the model

was

p5
ranking11
1;00011

and a threshold of p< .05 was applied.

3 | RESULTS

3.1 | Lesion distribution

The lesion distribution of the 82 patients in this study is shown in Fig-

ure 2. All patients’ lesions spared the two functional defined ROIs and

distributed into the WM structures.

3.2 | Behavioral results

Patients’ behavioral performances on object form verification tasks

were as follows: object form verification of large manmade objects,

68%618% (mean6 SD); object form verification of animals, 82%6

15%. For control tasks their performances were: oral repetition, 77%6

27%; number exact calculation, 74%629%; and visual form percep-

tion, 84%612%.

3.3 | White-matter network for large manmade

object- and animal-selective regions

Results of probabilistic tractography seeding from the two ROI spheres

(large manmade object ROI and animal ROI, Figure 3a) to each of the

AAL parcellations for each patient are shown in Figure 3b. The regions

having connection probabilities higher than zero were mostly ipsilateral

to the two ROIs, covering most of the temporal, parietal, and extending

to the frontal lobe (for animal ROI), with a few contralateral connec-

tions in the occipital lobe and temporal lobe (Figure 3c). A threshold

was applied to avoid spurious connections: connections that were

obtained in more than 10% of subjects (8 patients) were considered

and their probability values were used as features in the following SVR

model (Supporting Information, Table 2).
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3.4 | Prediction performance of VTC white-matter

pattern on object recognition behavior using SVR:

Large manmade objects

To examine whether the integrity of the specific WM pattern of the

VTC seed regions was necessary for object recognition behavior, we

conducted SVR analysis, using the WM patterns (a vector with proba-

bility values to 90 AAL cortical regions) for each patient as features and

the patient’s object form verification scores as labels. The accuracy of

the SVR model that outperformed 95% accuracies in a 10,000-time

permutation was regarded as a significant result (p< .05).

As shown in Figure 4b, the prediction accuracy of the SVR

model for large objects trained by whole-brain WM connections

from the large object ROI was statistically successful (rbetween predicted

value and actual value50.277, p5 .009 in a 10,000-time permutation). The

weights of the connected regions in this SVR model are visualized by

FIGURE 2 Lesion overlap map of the 82 patients. The n value of each voxel denotes the number of patients with a lesion. The functional
selective ROIs are labeled by different colors (dark blue5 large manmade object ROI; light blue5 animal ROI). The lesions of all 82 patients
spared the functional domain-selective ROIs in VTC. L, left hemisphere; R, right hemisphere
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BrainNet viewer (Xia, Wang, & He, 2013) (http://www.nitrc.org/proj-

ects/bnv) and shown in Figure 5. This finding was not a general effect of

cognitive state, as the prediction accuracies of the SVR models for the

control tasks were at chance (oral repetition: r52.021, p5 .887; num-

ber exact calculation: r5 .007, p5 .950; and visual form perception:

r52.014, p5 .891). Furthermore, this observation was not a general

effect of recognition for all types of objects, as the prediction accuracy

of the SVR model for animal verification performances was not statisti-

cally different from chance (r5 .089, p5 .236). These results indicated

that the effects of the WM connection of the large object ROI (left

PHG/med FG) were relatively specific for large object recognition.

3.4.1 | Excluding the early visual processing stream

To test whether the selective WM connection effect on large object

recognition was driven by the early visual processing streams, we fur-

ther conducted an SVR model excluding the connections to the early

visual cortex. We first excluded the connection probability of the left

calcarine sulcus, where the primary visual cortex (V1) is concentrated,

and used the remaining features to train the SVR model. The predic-

tion accuracy was significantly higher than baseline (r5 .278,

p5 .010). Then, we further excluded the connection probability of

the left lingual gyrus, the cuneus, the superior occipital gyrus, and the

middle occipital gyrus, and the remaining features still significantly

predicted the actual behavioral scores of large object verification

(r5 .270, p5 .011).

3.4.2 | The effects of lesion pattern in the cortical regions

To test whether indeed it was the ROI-related WM connectivity

pattern that was necessary, not the target cortical regions them-

selves (e.g., through connections from earlier visual cortex), we used

the lesion volume percentages of the nonvisual AAL grey matter

regions (excluding the whole occipital lobe) as features to train the

FIGURE 3 Functional defined ROIs and their whole-brain connectivity. (a) Spheres of 12 mm radius centered at the peak voxel of animal-
s> large manmade objects1 tools (red, uncorrected p< .001, around the right lateral posterior fusiform gyrus), large manmade

objects> animals1 tools (blue, uncorrected p< .001, around the left parahippocampal gyrus and the medial fusiform gyrus). (b) The registra-
tion results of two ROIs in the native space of six sample patients. (c) AAL regions that have connection probabilities higher than zero in at
least one patient to the animal ROI (top) and to the left large manmade object ROI (bottom). The two ROIs are circled in gray rings. L, left
hemisphere; R, right hemisphere
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SVR model and to predict the behavioral tasks performances. This

SVR model was unable to predict any of our behavioral tasks (large

manmade object verification: r5 .049, p5 .363; animal verification:

r52.041, p5 .653; oral repetition: r5 .151, p5 .120; number exact

calculation: r52.035, p5 .636; visual form perception: r5 .042,

p5 .389).

FIGURE 4 Prediction performance of the SVR models. (a) Examples of object form verification (top: an animal item; middle: a large
manmade object item) and visual form perception (bottom). (b) Prediction performance of VTC WM connection pattern on object form
verification (top) and three control tasks (bottom). The value of each bar refers to the R value of correlation between the predicted scores
from the SVR model (trained by the connection pattern of the ROI in each header in the LOOCV method) and the actual behavioral scores.
“**” refers to a significant correlation at p< .01 uncorrected, 10,000-times permutation

FIGURE 5 Connection weights of the significant SVR model. Weights of target regions are color-coded from dark blue to dark red, reflect-
ing a negative or positive weight coefficient, respectively, and are projected onto surface of a standard brain. The exact weight values are
presented in the right column. Transparent regions represent the regions that were not included in the SVR model. L, left hemisphere; R,
right hemisphere
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3.4.3 | The effects of the VTC ROI local property

While the patients did not have lesion in the local VTC ROI, it might be

argued that there are still subtle individual differences here (due to

lesion elsewhere or premorbid differences) that contribute to the cur-

rent results. We further performed a validation analysis, and found that

the mean FA value within the large object ROI—extracted by averaging

the FA values of all voxels in the 12 mm ROI mask—was not signifi-

cantly correlated with large object recognition (r5 .192, p5 . 083).

3.5 | Prediction performance of VTC white-matter

pattern on object recognition behavior using SVR:

Animals

The prediction accuracy of the SVR model built from the WM pattern

of the animal ROI for animal verification performances was at chance

(rbetween predicted value and actual value52.037, p5 .642). The connection

pattern of this ROI was unable to predict the large manmade object

verification scores (r52.161, p5 .920) or the control tasks scores (oral

repetition: r5 .079, p5 .519; number exact calculation: r52.137,

p5 .218; visual form perception: r5 .044, p5 .738).

3.5.1 | Excluding the early visual processing stream

To test whether the WM connection effect of the animal ROI was

masked by any potential effect of early visual processing streams, we

also tested a model that excluded the connections with the early visual

cortex. We first excluded the connection probability of the right calcar-

ine sulcus and used the remaining features to train the SVR model, and

the prediction was still not successful after we excluded the right cal-

carine sulcus (r52.021, p5 .570) or after we further excluded the

right lingual gyrus, the right cuneus, the bilateral superior occipital

gyrus, the right middle occipital gyrus, and the right inferior occipital

gyrus (r52.107, p5 .833).

3.5.2 | The effects of the VTC ROI local property

Simialrly, we tested whether the individual differences of the local VTC

region will affect the recognition behavior of animal domain. We found

that the mean FA value across voxels within the animal ROI mask was

not significantly correlated with animal verification scores (r5 .112,

p5 .315).

3.6 | Voxel-wise validation analysis: Prediction

performance of white-matter pattern of VTC voxels

on object recognition

On the voxel level, Figure 6a displays the parahippocampal gyrus and

fusiform gyrus voxels whose whole-brain WM connectivity predicted

the recognition performance (large manmade objects: rs� .181,

ps< .05 uncorrected; animals: rs� .172, ps< .05 uncorrected). When

plotting the number of significant (uncorrected) voxels (as shown in

Figure 6c) and the prediction strength (averaged prediction accuracy of

significant voxels, shown in Figure 6b) along the x-axis, a lateral-medial

trend could be seen for the effects of animals versus large manmade

objects, aligned with the lateral-medial distribution of animate-

inanimate distribution in the literature (Chao et al., 1999; Downing

et al., 2006; He et al., 2013; Mahon & Caramazza, 2009). When we

statistically compared the effects of large object versus animal effects

between the medial and lateral (left 1/3 vs. right 1/3 on the x axis, leav-

ing out the middle 1/3 to avoid overlapping effects), nonparametric

test showed that the distribution of number of significant voxels for

these two categories were significantly different between the lateral

and medial regions (v2 55.093, p5 .024), with the medial VTC (defined

by the medial 1/3 part along the x-axis) having marginally significantly

more significant voxels when predicting large objects relative to pre-

dicting animals (v2 53.400, p5 .065); although the prediction accuracy

of the significant voxels did not reach significance for such comparisons

(ps> .130 by repeated measures ANOVA).

4 | DISCUSSION

This study examined the critical role of VTC-related structural connec-

tivity in object recognition by studying patients whose lesions spared

the domain-selective VTC regions but affected various WM and/or

non-VTC regions. We found that the whole-brain structural connectiv-

ity pattern of a large manmade object-specific VTC cluster (in left

PHG/med FG; overlap with PPA, He et al., 2013) successfully predicted

patients’ large manmade object recognition performance and was not

related to animal recognition or other control tasks such as low-level

visual perception or nonvisual tasks. Voxel-wise analysis across VTC

further confirmed a trend of lateral-medial difference for the predict-

ability effects of recognition performance for animal versus large man-

made object.

The finding that the ability of large manmade object recognition is

specifically predicted by the WM pattern of the large object selective

cluster is consistent with previous findings that the domain-specific

functional responses in the VTC are associated with specific whole-

brain structural and functional connectivity patterns (Mahon & Cara-

mazza, 2011; Osher et al., 2016; Saygin et al., 2012; Stevens, Tessler,

Peng, & Martin, 2015; Wang et al., 2015), and further show that the

corresponding WM structure not only supports the downstream com-

putation of these domains of objects but also plays a direct role in the

object recognition behavior.

We considered those connections with relatively strong absolute

feature weights—the signs of the feature weights should be taken with

caution and negative signs might be related with de-noising (Haynes,

2015). The connection pattern that predicted the large manmade

object recognition behavior included WM tracts anteriorly along the

VTC is generally consistent with existing findings (Gomez et al., 2015),

which showed correlations between properties of the tracts beneath

the ILF linking with scene-selective VTC cluster and scene recognition

behavior. Importantly, these connections and a set of connections

beyond the ventral anterior ILF that were also predictors in the present

study, with relatively greater weights in the SVR model predicting large

manmade object recognition (e.g., putamen, middle, and superior tem-

poral cortex). The connections to the upstream visual regions (e.g., left

cuneus and left middle occipital gyrus) suggested the contribution of
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bottom–up computation in recognition, which is naturally predicted.

Importantly, after the removal of the connection probabilities to

upstream visual regions from the SVR prediction model, the remaining

connections were still capable of predicting large manmade object rec-

ognition behavior, thus indicating the necessity of these connections in

recognition. Accumulating evidence from neuroimaging and neuropsy-

chological literature suggests that these regions are associated with

meaning and knowledge representations (e.g., middle temporal gyrus,

Dronkers, Wilkins, Van Valin, Redfern, & Jaeger, 2004; Binder, Desai,

Graves, & Conant, 2009; Wei et al., 2012) and specific types of object

attributes such as motion (middle temporal gyrus, Hagen et al., 2002;

Ricciardi et al., 2011; Van Kemenade et al., 2014; Lingnau & Downing,

2015) or motor features (e.g., putamen, Wymbs, Bassett, Mucha, Por-

ter, & Grafton, 2012; middle and superior temporal gyrus, Grezes &

Decety, 2001; Lingnau & Downing, 2015). The involvement of connec-

tions between the large object ROI and nonvisual regions highlights the

importance of object nonvisual properties in large object recognition,

and might relate to interactions with perceivers through mechanisms

such as predictive coding (Bar et al., 2006), but the exact functional

roles remain unclear. One point worth noting is that fMRI studies have

established that large object perception activates a three-region net-

work for scene processing that is commonly assumed to be related to

navigation, including the PPA, largely overlapping our large object ROI,

along with the retrosplenial complex and the transverse occipital sulcus

(Avidan, Levy, Hendler, Zohary, & Malach, 2003; Bar & Aminoff, 2003;

Downing et al., 2006; Epstein, Harris, Stanley, & Kanwisher, 1999; He

et al., 2013). Additionally, rsFC analyses have shown that the PPA is

strongly functionally connected with the bilateral FG, PHG, and

FIGURE 6 Voxels whose whole-brain WM connectivity successfully predicted object recognition in the medial-to-lateral (x axis) direction.
(a) Voxels whose whole-brain WM connectivity could predict large manmade object verification (large manmade object-voxels, top) and ani-
mal verification (animal-voxels, bottom) performance, respectively. The darker red indicates a higher prediction accuracy of SVR model,
according to the color bar in the right. (b) The mean of prediction accuracy of animal-voxels (red line) and large manmade object-voxels
(blue line) in the medial-to-lateral direction on the VTC. The VTC here refers to the region comprised of FG and PHG. The voxels in the left
hemisphere were flipped to the right hemisphere. The mean prediction accuracy at a given x coordinate was calculated by averaging the
SVR prediction accuracy of significant voxels along the anterior–posterior (y axis) and superior–inferior (z axis) dimensions within the VTC
boundary. Gray bars represent the standard deviation (SD) of the SVR prediction accuracy of significant voxels on the x axis, with darker
grey bars for large manmade object voxels and lighter grey bars for animal voxels. Two orange boxes indicate the medial 1/3 and the lateral
1/3 of the x axis. (c) The number of animal-voxels and large manmade object-voxels in the medial-to-lateral direction on the VTC. The vox-
els in the left hemisphere were also flipped to the right hemisphere
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precuneus (Hutchison et al., 2014; Wang et al., 2015). Our current find-

ings indeed revealed the WM connection predictors that contained,

but not restricted to, connections to areas encompassing these regions.

The relationship between structural and functional connectivity pat-

terns and the corresponding functional roles of these connections

awaits further investigation.

The results for animal recognition are less clear. We did not

observe similarly significant effects of the WM connection for the rec-

ognition of animals in the ROI-based analysis of animal selective clus-

ters, yet trends of greater prediction accuracy associated with right

lateral aspect of the fusiform gyrus were seen in the voxel-wise analy-

sis. Considering together the inconsistent results for the effects of

FFA-related WM properties in face recognition (Section 1), one possi-

bility is that the recognition of animate categories is more local to the

visual system as the specific visual features are not as transparently

related to nonvisual (action) properties such as navigation for large

objects (Bi et al., 2016). The extent to which VTC connectivity is neces-

sary in recognition is a general principle for all object domains clearly

remains to be understood.

There are several methodological caveats worth discussing. First,

for lesion studies, the lesion distribution of stroke patients, which made

up the majority of our subjects, is associated with attracted vascular

territory (Phan, Donnan, Wright, & Reutens, 2005). Although the multi-

variate approach (i.e., SVR modeling) used here can detect relationships

between brain structure and behavior with higher sensitivity and speci-

ficity than univariate approaches (Zhang, Kimberg, Coslett, Schwartz, &

Wang, 2014), there are certain WM tracts that could not be tested in

our study due to the lack of patients with lesion (Figure 2). It is possible

that some of these are critical WM connections for object recognition

prediction and were not revealed. This may also explain why the grey-

matter region models were not successful in predicting performances

for the main and control tasks. Additionally, we tested the whole-brain

connectivity pattern based on the AAL template. This template was

chosen because it parcels GM on the basis of the anatomical structure

of the human brain and the current study focused on the role of ana-

tomical connectivity. It is possible that the regions in this parcellation

may contain heterogeneous functional subregions. Evidence from other

parcellation schemes is warranted. Finally, while we selected patients

whose lesion spared domain-specific VTC clusters and that there was

no positive effect of the FA values of the two local VTC ROIs, it is pos-

sible that the object recognition performance may relate to other struc-

tural properties of local ROI, such as GM volume or thickness (e.g.,

Gomez et al., 2017; McGugin, Gulick, & Van, Gauthier, 2016). Future

studies of different paradigms would be desirable for providing con-

verging evidence. One example would be using noninvasive methods

on healthy subjects that stimulate the regions identified here and

examine their effects on object recognition. Another would be to

jointly carry out fMRI experiments with patients and lesion analyses to

delineate the relationship between the connectivity and local functional

responses patterns in VTC for object recognition.

In conclusion, in patients with lesions sparing the large manmade

object-specific VTC cluster in PHG and medial FG, the recognition per-

formance of large manmade objects was predicted from their whole-

brain WM connection patterns of the corresponding VTC cluster, indi-

cating the necessity of the orchestration between VTC and distributed

nonvisual regions in large manmade object recognition behavior. Our

results provide evidence that the large-scale anatomical connectivity

associated with the VTC directly constrains object recognition for at

least certain domains.
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